These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38880459)
1. Highly conductive, rapid self-healing, and anti-freezing poly(3,4-ethylenedioxythiophene)/lignosulfonate-cationic guar gum ionogels for multifunctional sensors. Li N; Qiu L; Li B; Feng L; Qu S; Ji X; Chen W Int J Biol Macromol; 2024 Aug; 274(Pt 1):133159. PubMed ID: 38880459 [TBL] [Abstract][Full Text] [Related]
2. Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Zhang B; Sudre G; Quintard G; Serghei A; David L; Bernard J; Fleury E; Charlot A Carbohydr Polym; 2017 Feb; 157():586-595. PubMed ID: 27987966 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of anti-freezing and self-healing hydrogel sensors based on carboxymethyl guar gum and poly(ionic liquid). He S; Fang H; Liu J; Wu X; Liu Z; Gu W; Shao W Int J Biol Macromol; 2024 Nov; 279(Pt 1):135112. PubMed ID: 39197606 [TBL] [Abstract][Full Text] [Related]
4. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Zhao R; Fang Y; Zhao Z; Song S Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849 [TBL] [Abstract][Full Text] [Related]
5. Ultra-stretchable, self-recovering, self-healing cationic guar gum/poly(stearyl methacrylate-co-acrylic acid) hydrogels. Jing H; Feng J; Shi J; He L; Guo P; Guan S; Fu H; Ao Y Carbohydr Polym; 2021 Mar; 256():117563. PubMed ID: 33483064 [TBL] [Abstract][Full Text] [Related]
6. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid. Sharma M; Mondal D; Mukesh C; Prasad K Carbohydr Polym; 2013 Oct; 98(1):1025-30. PubMed ID: 23987443 [TBL] [Abstract][Full Text] [Related]
7. Design of Stretchable and Conductive Self-Adhesive Hydrogels as Flexible Sensors by Guar-Gum-Enabled Dynamic Interactions. Li Y; Liu Y; Liu H; Yu S; Ba Z; Liu M; Ma S; Xing LB Langmuir; 2024 May; 40(19):10305-10312. PubMed ID: 38696716 [TBL] [Abstract][Full Text] [Related]
8. Highly Electrically Conductive Flexible Ionogels by Drop-Casting Ionic Liquid/PEDOT:PSS Composite Liquids onto Hydrogel Networks. Yang J; Chang L; Ma C; Cao Z; Liu H Macromol Rapid Commun; 2022 Jan; 43(1):e2100557. PubMed ID: 34669220 [TBL] [Abstract][Full Text] [Related]
9. Fluorescent double network ionogels with fast self-healability and high resilience for reliable human motion detection. Zhao X; Xu J; Zhang J; Guo M; Wu Z; Li Y; Xu C; Yin H; Wang X Mater Horiz; 2023 Feb; 10(2):646-656. PubMed ID: 36533533 [TBL] [Abstract][Full Text] [Related]
10. Acryloyl chitosan as a macro-crosslinker for freezing-resistant, self-healing and self-adhesive ionogels-based multicompetent flexible sensors. Ren Y; Zou B; Wu Y; Ye L; Liang Y; Li Y Int J Biol Macromol; 2024 Jul; 273(Pt 1):133002. PubMed ID: 38851613 [TBL] [Abstract][Full Text] [Related]
11. Rapid Radiation Synthesis of a Flexible, Self-Healing, and Adhesive Ionogel with Environmental Tolerance for Multifunctional Strain Sensors. Peng H; Yang F; Wang X; Feng E; Sun K; Hao L; Zhang X; Ma G ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874752 [TBL] [Abstract][Full Text] [Related]
12. Stretchable, rapid self-healing guar gum-poly(acrylic acid) hydrogels as wearable strain sensors for human motion detection based on Janus graphene oxide. Deng Z; Lin B; Wang W; Bai L; Chen H; Yang L; Yang H; Wei D Int J Biol Macromol; 2021 Nov; 191():627-636. PubMed ID: 34536475 [TBL] [Abstract][Full Text] [Related]
13. Conducting Polymer Iongels Based on PEDOT and Guar Gum. Del Agua I; Mantione D; Casado N; Sanchez-Sanchez A; Malliaras GG; Mecerreyes D ACS Macro Lett; 2017 Apr; 6(4):473-478. PubMed ID: 35610866 [TBL] [Abstract][Full Text] [Related]
14. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921 [TBL] [Abstract][Full Text] [Related]
15. Facile Access to Guar Gum Based Supramolecular Hydrogels with Rapid Self-Healing Ability and Multistimuli Responsive Gel-Sol Transitions. Li N; Liu C; Chen W J Agric Food Chem; 2019 Jan; 67(2):746-752. PubMed ID: 30571099 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional sodium lignosulfonate/xanthan gum/sodium alginate/polyacrylamide ionic hydrogels composite as a high-performance wearable strain sensor. Zhang M; Ren J; Li R; Zhang W; Li Y; Yang W Int J Biol Macromol; 2024 Mar; 261(Pt 2):129718. PubMed ID: 38296129 [TBL] [Abstract][Full Text] [Related]
17. Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. Hao S; Li T; Yang X; Song H ACS Appl Mater Interfaces; 2022 Jan; 14(1):2029-2037. PubMed ID: 34958556 [TBL] [Abstract][Full Text] [Related]
18. Amphiphilic cationic polymers as effective substances improving the safety of use of body wash gels. Bujak T; Nizioł-Łukaszewska Z; Ziemlewska A Int J Biol Macromol; 2020 Mar; 147():973-979. PubMed ID: 31678103 [TBL] [Abstract][Full Text] [Related]
19. Determination of the Degree of Substitution of Cationic Guar Gum by Headspace-Based Gas Chromatography during Its Synthesis. Wan X; Guo C; Feng J; Yu T; Chai XS; Chen G; Xie WQ J Agric Food Chem; 2017 Aug; 65(32):7012-7016. PubMed ID: 28749661 [TBL] [Abstract][Full Text] [Related]
20. Rapid and Controllable Preparation of Multifunctional Lignin-Based Eutectogels for the Design of High-Performance Flexible Sensors. Su X; Zhai S; Jin K; Li C; Chen A; Cai Z; Xian C; Zhao Y ACS Appl Mater Interfaces; 2023 Sep; 15(38):45526-45535. PubMed ID: 37708401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]