BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38880905)

  • 1. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives.
    Zhu K; Wang L; Xiao Y; Zhang X; You G; Chen Y; Wang Q; Zhao L; Zhou H; Chen G
    J Nanobiotechnology; 2024 Jun; 22(1):336. PubMed ID: 38880905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights from studies of blood substitutes in trauma.
    Moore EE; Johnson JL; Cheng AM; Masuno T; Banerjee A
    Shock; 2005 Sep; 24(3):197-205. PubMed ID: 16135956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of hemoglobin-vesicles as artificial oxygen carriers.
    Sakai H; Sou K; Horinouchi H; Kobayashi K; Tsuchida E
    Artif Organs; 2009 Feb; 33(2):139-45. PubMed ID: 19178458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers.
    Patton JN; Palmer AF
    Biotechnol Prog; 2006; 22(4):1025-49. PubMed ID: 16889379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral oxygen delivery by liposome-encapsulated hemoglobin: a positron-emission tomographic evaluation in a rat model of hemorrhagic shock.
    Awasthi V; Yee SH; Jerabek P; Goins B; Phillips WT
    J Appl Physiol (1985); 2007 Jul; 103(1):28-38. PubMed ID: 17615284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of ferulic acid modified hemoglobin.
    Guo S; Wang P; Chen C; Meng Z; Qi D; Wang X
    Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1075-9. PubMed ID: 26838267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design.
    Buehler PW; D'Agnillo F; Schaer DJ
    Trends Mol Med; 2010 Oct; 16(10):447-57. PubMed ID: 20708968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant effects of vitamin C on hemoglobin-based oxygen carriers derived from human cord blood.
    Chen G; Duan Y; Liu J; Wang H; Yang C
    Artif Cells Nanomed Biotechnol; 2016; 44(1):56-61. PubMed ID: 26671172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The artificial oxygen carrier erythrocruorin-characteristics and potential significance in medicine.
    Kruczkowska W; Kciuk M; Pasieka Z; Kłosiński K; Płuciennik E; Elmer J; Waszczykowska K; Kołat D; Kałuzińska-Kołat Ż
    J Mol Med (Berl); 2023 Aug; 101(8):961-972. PubMed ID: 37460699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties.
    Gu X; Savla C; Palmer AF
    Biotechnol Bioeng; 2022 Jan; 119(1):176-186. PubMed ID: 34672363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.
    Sakai H; Okuda N; Takeoka S; Tsuchida E
    Microvasc Res; 2011 Mar; 81(2):169-76. PubMed ID: 21167845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All hemoglobin-based oxygen carriers are not created equally.
    Buehler PW; Alayash AI
    Biochim Biophys Acta; 2008 Oct; 1784(10):1378-81. PubMed ID: 18206989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin-based oxygen carriers for hemorrhagic shock.
    Elmer J; Alam HB; Wilcox SR
    Resuscitation; 2012 Mar; 83(3):285-92. PubMed ID: 21978876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework Encapsulating Hemoglobin as a High-Stable and Long-Circulating Oxygen Carriers to Treat Hemorrhagic Shock.
    Peng S; Liu J; Qin Y; Wang H; Cao B; Lu L; Yu X
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35604-35612. PubMed ID: 31495166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balance between oxygen transport and blood rheology during resuscitation from hemorrhagic shock with polymerized bovine hemoglobin.
    Williams AT; Lucas A; Muller CR; Bolden-Rush C; Palmer AF; Cabrales P
    J Appl Physiol (1985); 2020 Jul; 129(1):97-107. PubMed ID: 32552431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas bioengineering using hemoglobin-vesicles for versatile clinical applications.
    Sakai H; Takeoka S; Kobayashi K
    Curr Pharm Des; 2011; 17(22):2352-9. PubMed ID: 21736544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From hemoglobin allostery to hemoglobin-based oxygen carriers.
    Faggiano S; Ronda L; Bruno S; Abbruzzetti S; Viappiani C; Bettati S; Mozzarelli A
    Mol Aspects Med; 2022 Apr; 84():101050. PubMed ID: 34776270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Present situation of the development of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles).
    Sakai H
    Curr Drug Discov Technol; 2012 Sep; 9(3):188-93. PubMed ID: 21726183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation.
    Nadimifar M; Jin W; Coll-Satue C; Bor G; Kempen PJ; Moosavi-Movahedi AA; Hosta-Rigau L
    Biomater Adv; 2024 Jan; 156():213698. PubMed ID: 38006785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.