These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38880914)

  • 1. Accurate prediction of drug combination risk levels based on relational graph convolutional network and multi-head attention.
    He SH; Yun L; Yi HC
    J Transl Med; 2024 Jun; 22(1):572. PubMed ID: 38880914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MathEagle: Accurate prediction of drug-drug interaction events via multi-head attention and heterogeneous attribute graph learning.
    Hou LX; Yi HC; You ZH; Chen SH; Zheng J; Kwoh CK
    Comput Biol Med; 2024 Jul; 177():108642. PubMed ID: 38820777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug-Drug Interaction Events.
    Feng J; Liang Y; Yu T
    Comput Biol Med; 2023 Nov; 166():107492. PubMed ID: 37820558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism.
    Lin S; Wang Y; Zhang L; Chu Y; Liu Y; Fang Y; Jiang M; Wang Q; Zhao B; Xiong Y; Wei DQ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34671814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction.
    He H; Chen G; Yu-Chian Chen C
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35511112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs.
    Feng YH; Zhang SW
    Molecules; 2022 May; 27(9):. PubMed ID: 35566354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-based cross domain graph neural network for prediction of drug-drug interactions.
    Yu H; Li K; Dong W; Song S; Gao C; Shi J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37195815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MGDDI: A multi-scale graph neural networks for drug-drug interaction prediction.
    Geng G; Wang L; Xu Y; Wang T; Ma W; Duan H; Zhang J; Mao A
    Methods; 2024 Aug; 228():22-29. PubMed ID: 38754712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.
    Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HetDDI: a pre-trained heterogeneous graph neural network model for drug-drug interaction prediction.
    Li Z; Tu X; Chen Y; Lin W
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CGINet: graph convolutional network-based model for identifying chemical-gene interaction in an integrated multi-relational graph.
    Wang W; Yang X; Wu C; Yang C
    BMC Bioinformatics; 2020 Nov; 21(1):544. PubMed ID: 33243142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DMFDDI: deep multimodal fusion for drug-drug interaction prediction.
    Gan Y; Liu W; Xu G; Yan C; Zou G
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MASMDDI: multi-layer adaptive soft-mask graph neural network for drug-drug interaction prediction.
    Lin J; Hong B; Cai Z; Lu P; Lin K
    Front Pharmacol; 2024; 15():1369403. PubMed ID: 38831885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multitype drug interaction prediction based on the deep fusion of drug features and topological relationships.
    Kang LP; Lin KB; Lu P; Yang F; Chen JP
    PLoS One; 2022; 17(8):e0273764. PubMed ID: 36037188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction.
    He S; Yun L; Yi H
    BMC Bioinformatics; 2024 Feb; 25(1):79. PubMed ID: 38378479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual graph neural network for drug-drug interactions prediction based on molecular structure and interactions.
    Ma M; Lei X
    PLoS Comput Biol; 2023 Jan; 19(1):e1010812. PubMed ID: 36701288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.