These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38881166)
1. Identification of Bloodstains by Species Using Extreme Learning Machine and Hyperspectral Imaging Technology. Jianqiang Z; Xinyu Z; Caiping L; Ying L; Huihui R; Hanyu Z; Xingshuai P; Jiateng W; Yantong S; Chengyun P; Qifu Y Appl Spectrosc; 2024 Sep; 78(9):942-950. PubMed ID: 38881166 [TBL] [Abstract][Full Text] [Related]
2. Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images. Li Y; Wang J; Gao T; Sun Q; Zhang L; Tang M Comput Intell Neurosci; 2020; 2020():8886932. PubMed ID: 32952545 [TBL] [Abstract][Full Text] [Related]
3. Rapid and non-destructive identification of Panax ginseng origins using hyperspectral imaging, visible light imaging, and X-ray imaging combined with multi-source data fusion strategies. Ping J; Ying Z; Hao N; Miao P; Ye C; Liu C; Li W Food Res Int; 2024 Sep; 192():114758. PubMed ID: 39147491 [TBL] [Abstract][Full Text] [Related]
4. Age estimation of bloodstains based on convolutional neural network algorithm and hyperspectral imaging technology. Qifu Y; Xinyu Z; Yueying Q; Jiayi X; Jianqiang Z; Ying L; Jiaquan W; Kun M Anal Methods; 2023 Oct; 15(38):5063-5070. PubMed ID: 37743774 [TBL] [Abstract][Full Text] [Related]
5. Non-Destructive Detection of Different Pesticide Residues on the Surface of Hami Melon Classification Based on tHBA-ELM Algorithm and SWIR Hyperspectral Imaging. Hu Y; Ma B; Wang H; Li Y; Zhang Y; Yu G Foods; 2023 Apr; 12(9):. PubMed ID: 37174311 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of human and animal bloodstains using hyperspectral imaging. Cooney GS; Köhler H; Chalopin C; Babian C Forensic Sci Med Pathol; 2024 Jun; 20(2):490-499. PubMed ID: 37721660 [TBL] [Abstract][Full Text] [Related]
7. In-field and non-destructive determination of comprehensive maturity index and maturity stages of Camellia oleifera fruits using a portable hyperspectral imager. Yuan W; Zhou H; Zhou Y; Zhang C; Jiang X; Jiang H Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124266. PubMed ID: 38599024 [TBL] [Abstract][Full Text] [Related]
8. The New Hyperspectral Analysis Method for Distinguishing the Types of Heavy Metal Copper and Lead Pollution Elements. Zhang J; Wang M; Yang K; Li Y; Li Y; Wu B; Han Q Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805414 [TBL] [Abstract][Full Text] [Related]
9. Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms. Wei Y; Li X; Pan X; Li L Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297289 [TBL] [Abstract][Full Text] [Related]
10. Unified Classification of Bacterial Colonies on Different Agar Media Based on Hyperspectral Imaging and Machine Learning. Gu P; Feng YZ; Zhu L; Kong LQ; Zhang XL; Zhang S; Li SW; Jia GF Molecules; 2020 Apr; 25(8):. PubMed ID: 32295273 [TBL] [Abstract][Full Text] [Related]
11. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning]. Cheng SX; Kong WW; Zhang C; Liu F; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356 [TBL] [Abstract][Full Text] [Related]
12. [Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0]. Yi T; Lin C; En-Ci J; Ji-Zhong Y Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5438-5442. PubMed ID: 33350203 [TBL] [Abstract][Full Text] [Related]
13. Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning. Xu Z; Jiang Y; Ji J; Forsberg E; Li Y; He S Opt Express; 2020 Oct; 28(21):30686-30700. PubMed ID: 33115064 [TBL] [Abstract][Full Text] [Related]
14. Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager. Jiao C; Xu Z; Bian Q; Forsberg E; Tan Q; Peng X; He S Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120054. PubMed ID: 34119773 [TBL] [Abstract][Full Text] [Related]
15. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090 [TBL] [Abstract][Full Text] [Related]
16. Development of multi-disturbance bagging Extreme Learning Machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology. Cheng J; Sun J; Yao K; Xu M; Wang S; Fu L Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121479. PubMed ID: 35696971 [TBL] [Abstract][Full Text] [Related]
17. Acceleration of Hyperspectral Skin Cancer Image Classification through Parallel Machine-Learning Methods. Petracchi B; Torti E; Marenzi E; Leporati F Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474935 [TBL] [Abstract][Full Text] [Related]
18. [Identification of varieties of black bean using ground based hyperspectral imaging]. Zhang C; Liu F; Zhang HL; Kong WW; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405 [TBL] [Abstract][Full Text] [Related]
19. A Hybrid convolution neural network for the classification of tree species using hyperspectral imagery. Wang J; Jiang Y PLoS One; 2024; 19(5):e0304469. PubMed ID: 38820430 [TBL] [Abstract][Full Text] [Related]
20. Non-destructive detection and classification of textile fibres based on hyperspectral imaging and 1D-CNN. Huang J; He H; Lv R; Zhang G; Zhou Z; Wang X Anal Chim Acta; 2022 Sep; 1224():340238. PubMed ID: 35998989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]