These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter. Mo C; Fu Z; Kang W; Zhang P; He XT Phys Rev Lett; 2018 May; 120(20):205002. PubMed ID: 29864337 [TBL] [Abstract][Full Text] [Related]
3. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition. Baczewski AD; Shulenburger L; Desjarlais MP; Hansen SB; Magyar RJ Phys Rev Lett; 2016 Mar; 116(11):115004. PubMed ID: 27035307 [TBL] [Abstract][Full Text] [Related]
4. Dynamic confinement of targets heated quasi-isochorically with heavy ion beams. Kozyreva A; Basko M; Rosmej FB; Schlegel T; Tauschwitz A; Hoffmann DH Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056406. PubMed ID: 14682893 [TBL] [Abstract][Full Text] [Related]
5. Isochoric heating of solid-density matter with an ultrafast proton beam. Patel PK; Mackinnon AJ; Key MH; Cowan TE; Foord ME; Allen M; Price DF; Ruhl H; Springer PT; Stephens R Phys Rev Lett; 2003 Sep; 91(12):125004. PubMed ID: 14525369 [TBL] [Abstract][Full Text] [Related]
6. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter. Kang D; Dai J J Phys Condens Matter; 2018 Feb; 30(7):073002. PubMed ID: 29186001 [TBL] [Abstract][Full Text] [Related]
13. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams. Bang W; Albright BJ; Bradley PA; Gautier DC; Palaniyappan S; Vold EL; Santiago Cordoba MA; Hamilton CE; Fernández JC Sci Rep; 2015 Sep; 5():14318. PubMed ID: 26392208 [TBL] [Abstract][Full Text] [Related]
14. Comment on "Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime". Witte BBL; Röpke G; Neumayer P; French M; Sperling P; Recoules V; Glenzer SH; Redmer R Phys Rev E; 2019 Apr; 99(4-2):047201. PubMed ID: 31108609 [TBL] [Abstract][Full Text] [Related]
15. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited). Fletcher LB; Lee HJ; Barbrel B; Gauthier M; Galtier E; Nagler B; Döppner T; LePape S; Ma T; Pak A; Turnbull D; White T; Gregori G; Wei M; Falcone RW; Heimann P; Zastrau U; Hastings JB; Glenzer SH Rev Sci Instrum; 2014 Nov; 85(11):11E702. PubMed ID: 25430365 [TBL] [Abstract][Full Text] [Related]
16. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime. Nguyen QLD; Simoni J; Dorney KM; Shi X; Ellis JL; Brooks NJ; Hickstein DD; Grennell AG; Yazdi S; Campbell EEB; Tan LZ; Prendergast D; Daligault J; Kapteyn HC; Murnane MM Phys Rev Lett; 2023 Aug; 131(8):085101. PubMed ID: 37683150 [TBL] [Abstract][Full Text] [Related]
17. Plasmon resonance in warm dense matter. Thiele R; Bornath T; Fortmann C; Höll A; Redmer R; Reinholz H; Röpke G; Wierling A; Glenzer SH; Gregori G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026411. PubMed ID: 18850950 [TBL] [Abstract][Full Text] [Related]
20. Finite-temperature density-functional-theory investigation on the nonequilibrium transient warm-dense-matter state created by laser excitation. Zhang H; Zhang S; Kang D; Dai J; Bonitz M Phys Rev E; 2021 Jan; 103(1-1):013210. PubMed ID: 33601505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]