BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38882168)

  • 1. Development of a Microwave-Assisted Bench Reactor for Biomass Pyrolysis Using Hybrid Heating.
    Leite JCS; Suota MJ; Ramos LP; Lenzi MK; Luz LFL
    ACS Omega; 2024 Jun; 9(23):24987-24997. PubMed ID: 38882168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on the role of susceptors in the recovery of valuable renewable carbon products from microwave-assisted pyrolysis of lignocellulosic and algal biomasses: Prospects and challenges.
    Suriapparao DV; Tanneru HK; Reddy BR
    Environ Res; 2022 Dec; 215(Pt 3):114378. PubMed ID: 36150436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and characterization of chars from cherry pulp via pyrolysis.
    Pehlivan E; Özbay N; Yargıç AS; Şahin RZ
    J Environ Manage; 2017 Dec; 203(Pt 3):1017-1025. PubMed ID: 28495055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the microwave heating performance of biochar as microwave absorber for microwave-assisted pyrolysis technology.
    Singh R; Lindenberger C; Chawade A; Vivekanand V
    Sci Rep; 2024 Apr; 14(1):9222. PubMed ID: 38649433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar.
    Li X; Peng B; Liu Q; Zhang H
    Bioresour Technol; 2022 Mar; 348():126745. PubMed ID: 35077816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.
    Zuo W; Tian Y; Ren N
    Waste Manag; 2011 Jun; 31(6):1321-6. PubMed ID: 21353518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective electronic waste valorization via microwave-assisted pyrolysis: investigation of graphite susceptor and feedstock quantity on pyrolysis using experimental and polynomial regression techniques.
    Mistry C; Surya DV; Potnuri R; Basak T; Kumar PS; Rao CS; Gautam R; Sridhar P; Choksi H; Remya N
    Environ Sci Pollut Res Int; 2023 Dec; ():. PubMed ID: 38038921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating.
    Dai C; Hu E; Yang Y; Li M; Li C; Zeng Y
    Waste Manag; 2023 Sep; 169():147-156. PubMed ID: 37442035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives.
    Hadiya V; Popat K; Vyas S; Varjani S; Vithanage M; Kumar Gupta V; Núñez Delgado A; Zhou Y; Loke Show P; Bilal M; Zhang Z; Sillanpää M; Sabyasachi Mohanty S; Patel Z
    Bioresour Technol; 2022 Jul; 355():127303. PubMed ID: 35562022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of waste polystyrene into valuable aromatic hydrocarbons via microwave-assisted pyrolysis.
    Kachhadiya K; Patel D; Vijaybhai GJ; Raghuvanshi P; Surya DV; Dharaskar S; Kumar GP; Reddy BR; Remya N; Kumar TH; Basak T
    Environ Sci Pollut Res Int; 2023 Jun; ():. PubMed ID: 37365360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis.
    Lin J; Xu Z; Zhang Q; Cao Y; Mašek O; Lei H; Tsang DCW
    Bioresour Technol; 2024 Feb; 393():130085. PubMed ID: 37993065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.
    Wang N; Tahmasebi A; Yu J; Xu J; Huang F; Mamaeva A
    Bioresour Technol; 2015 Aug; 190():89-96. PubMed ID: 25935388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption.
    Wan Z; Li K
    Chemosphere; 2018 Mar; 194():370-380. PubMed ID: 29223116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review.
    Allende S; Brodie G; Jacob MV
    Environ Res; 2023 Jun; 226():115619. PubMed ID: 36906271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis behaviors of anaerobic digestion residues in a fixed-bed reactor with rapid infrared heating.
    Hu E; Li M; Tian Y; Yi X; Dai C; Shao S; Li C; Zhao Y
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51815-51826. PubMed ID: 35257338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS.
    Zhang J; Sekyere DT; Niwamanya N; Huang Y; Barigye A; Tian Y
    ACS Omega; 2022 Feb; 7(5):4245-4256. PubMed ID: 35155917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast microwave assisted pyrolysis of biomass using microwave absorbent.
    Borges FC; Du Z; Xie Q; Trierweiler JO; Cheng Y; Wan Y; Liu Y; Zhu R; Lin X; Chen P; Ruan R
    Bioresour Technol; 2014 Mar; 156():267-74. PubMed ID: 24518438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.