These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38882196)

  • 1. Toward Monodomain Nematic Liquid Crystal Elastomers of Arbitrary Thickness through PET-RAFT Polymerization.
    Berrow SR; Mandle RJ; Raistrick T; Reynolds M; Gleeson HF
    Macromolecules; 2024 Jun; 57(11):5218-5229. PubMed ID: 38882196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.
    Kim H; Zhu B; Chen H; Adetiba O; Agrawal A; Ajayan P; Jacot JG; Verduzco R
    J Vis Exp; 2016 Feb; (108):e53688. PubMed ID: 26889665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Biaxial Nematic Order in Auxetic Liquid Crystal Elastomers.
    Wang Z; Raistrick T; Street A; Reynolds M; Liu Y; Gleeson HF
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programming Orientation in Liquid Crystalline Elastomers Prepared with Intra-Mesogenic Supramolecular Bonds.
    Lewis KL; Herbert KM; Matavulj VM; Hoang JD; Ellison ET; Bauman GE; Herman JA; White TJ
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3467-3475. PubMed ID: 36598490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic colloidal micromuscles from liquid crystal elastomers.
    Marshall JE; Gallagher S; Terentjev EM; Smoukov SK
    J Am Chem Soc; 2014 Jan; 136(1):474-9. PubMed ID: 24295079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking.
    Lee J; Guo Y; Choi YJ; Jung S; Seol D; Choi S; Kim JH; Kim Y; Jeong KU; Ahn SK
    Soft Matter; 2020 Mar; 16(11):2695-2705. PubMed ID: 32057062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma-Induced Polymerizations: A New Synthetic Entry in Liquid Crystal Elastomer Actuators.
    Ni B; Zhang M; Guyon C; Keller P; Tatoulian M; Li MH
    Macromol Rapid Commun; 2020 Oct; 41(19):e2000385. PubMed ID: 32812328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Side-Chain Liquid Crystal Elastomer Exhibiting Anomalous Reversible Shape Change.
    Yin L; Han L; Ge F; Tong X; Zhang W; Soldera A; Zhao Y
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):15129-15134. PubMed ID: 32449819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct shape programming of liquid crystal elastomers.
    Barnes M; Verduzco R
    Soft Matter; 2019 Jan; 15(5):870-879. PubMed ID: 30628627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers.
    Mistry D; Traugutt NA; Sanborn B; Volpe RH; Chatham LS; Zhou R; Song B; Yu K; Long KN; Yakacki CM
    Nat Commun; 2021 Nov; 12(1):6677. PubMed ID: 34795228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in 4D Printing of Liquid Crystal Elastomers.
    Chen M; Gao M; Bai L; Zheng H; Qi HJ; Zhou K
    Adv Mater; 2023 Jun; 35(23):e2209566. PubMed ID: 36461147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers.
    Javed M; Corazao T; Saed MO; Ambulo CP; Li Y; Kessler MR; Ware TH
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35087-35096. PubMed ID: 35866446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions.
    Hanzon DW; Traugutt NA; McBride MK; Bowman CN; Yakacki CM; Yu K
    Soft Matter; 2018 Feb; 14(6):951-960. PubMed ID: 29319713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible liquid-crystal elastomers mimic the intervertebral disc.
    Shaha RK; Merkel DR; Anderson MP; Devereaux EJ; Patel RR; Torbati AH; Willett N; Yakacki CM; Frick CP
    J Mech Behav Biomed Mater; 2020 Jul; 107():103757. PubMed ID: 32276188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Liquid Crystallinity and Mechanical Deformation on the Molecular Relaxations of an Auxetic Liquid Crystal Elastomer.
    Raistrick T; Reynolds M; Gleeson HF; Mattsson J
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Crosslinkers on Optical and Mechanical Behavior of Chiral Nematic Liquid Crystal Elastomers.
    Ku K; Hisano K; Yuasa K; Shigeyama T; Akamatsu N; Shishido A; Tsutsumi O
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers.
    Merkel DR; Traugutt NA; Visvanathan R; Yakacki CM; Frick CP
    Soft Matter; 2018 Jul; 14(29):6024-6036. PubMed ID: 29974115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the Optical Properties of Transparent Auxetic Liquid Crystal Elastomers.
    Cooper EJ; Reynolds M; Raistrick T; Berrow SR; Jull EIL; Reshetnyak V; Mistry D; Gleeson HF
    Macromolecules; 2024 Mar; 57(5):2030-2038. PubMed ID: 38495386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers.
    Bauman GE; Koch JA; White TJ
    Soft Matter; 2022 Apr; 18(16):3168-3176. PubMed ID: 35380153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodomain liquid crystal elastomer bionic muscle fibers with excellent mechanical and actuation properties.
    Dong X; Zhou X; Li L; Cao X; Xu J; Dai S; Jiang Y; Li Q; Yuan N; Ding J
    iScience; 2023 Apr; 26(4):106357. PubMed ID: 37009212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.