These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38882398)

  • 21. Improvement of dissolution rate of indomethacin by inkjet printing.
    Wickström H; Palo M; Rijckaert K; Kolakovic R; Nyman JO; Määttänen A; Ihalainen P; Peltonen J; Genina N; de Beer T; Löbmann K; Rades T; Sandler N
    Eur J Pharm Sci; 2015 Jul; 75():91-100. PubMed ID: 25817804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing.
    Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design.
    Gardini D; Blosi M; Zanelli C; Dondi M
    J Nanosci Nanotechnol; 2015 May; 15(5):3552-61. PubMed ID: 26504976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers.
    Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks.
    Trenfield SJ; Xian Tan H; Awad A; Buanz A; Gaisford S; Basit AW; Goyanes A
    Int J Pharm; 2019 Aug; 567():118443. PubMed ID: 31212052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous inkjet printing of enalapril maleate onto orodispersible film formulations.
    Thabet Y; Lunter D; Breitkreutz J
    Int J Pharm; 2018 Jul; 546(1-2):180-187. PubMed ID: 29753906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of disperse inks for direct inkjet printing of non-pretreated polyester fabrics.
    Gao C; Xing T; Hou X; Chen G
    RSC Adv; 2019 Jun; 9(34):19791-19799. PubMed ID: 35519391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Novel "Inks" for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery.
    Louzao I; Koch B; Taresco V; Ruiz-Cantu L; Irvine DJ; Roberts CJ; Tuck C; Alexander C; Hague R; Wildman R; Alexander MR
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6841-6848. PubMed ID: 29322768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks.
    Zhao B; Sivasankar VS; Subudhi SK; Sinha S; Dasgupta A; Das S
    Nanoscale; 2022 Oct; 14(40):14858-14894. PubMed ID: 36196967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Inkjet Printing of Graphene-Based Elements: Influence of Dispersing Agent on Ink Viscosity.
    Dybowska-Sarapuk L; Kielbasinski K; Arazna A; Futera K; Skalski A; Janczak D; Sloma M; Jakubowska M
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30096800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing.
    Chen H; Liu Y; Balabani S; Hirayama R; Huang J
    Research (Wash D C); 2023; 6():0197. PubMed ID: 37469394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder.
    Infanger S; Haemmerli A; Iliev S; Baier A; Stoyanov E; Quodbach J
    Int J Pharm; 2019 Jan; 555():198-206. PubMed ID: 30458260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release.
    Olmos-Juste R; Guaresti O; Calvo-Correas T; Gabilondo N; Eceiza A
    Int J Pharm; 2021 Nov; 609():121124. PubMed ID: 34597726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical study of drop dynamics for inkjet based 3D printing of pharmaceutical tablets.
    Mehta T; Aziz H; Sen K; Chang SY; Nagarajan V; Ma AWK; Chaudhuri B
    Int J Pharm; 2024 May; 656():124037. PubMed ID: 38522489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.