BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38882474)

  • 1. High-efficiency removal of As(iii) from groundwater using siderite as the iron source in the electrocoagulation process.
    Yu H; Li J; Qu W; Wang W; Wang J
    RSC Adv; 2024 Jun; 14(27):19206-19218. PubMed ID: 38882474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ production of iron flocculation and reactive oxygen species by electrochemically decomposing siderite: An innovative Fe-EC route to remove trivalent arsenic.
    Chen M; Hu H; Chen M; Wang C; Wang Q; Zeng C; Shi Q; Song W; Li X; Zhang Q
    J Hazard Mater; 2023 Jan; 441():129884. PubMed ID: 36084465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
    Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM
    Water Res; 2020 May; 175():115668. PubMed ID: 32163769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.
    Wan W; Pepping TJ; Banerji T; Chaudhari S; Giammar DE
    Water Res; 2011 Jan; 45(1):384-92. PubMed ID: 20800261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater.
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do operating conditions affect As(III) removal by iron electrocoagulation?
    Delaire C; Amrose S; Zhang M; Hake J; Gadgil A
    Water Res; 2017 Apr; 112():185-194. PubMed ID: 28160698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide.
    Bandaru SRS; van Genuchten CM; Kumar A; Glade S; Hernandez D; Nahata M; Gadgil A
    Environ Sci Technol; 2020 May; 54(10):6094-6103. PubMed ID: 32315523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk?
    Goren AY; Kobya M; Khataee A
    Sci Total Environ; 2022 Feb; 808():152135. PubMed ID: 34864021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater.
    Mendoza-Chávez CE; Carabin A; Dirany A; Drogui P; Buelna G; Meza-Montenegro MM; Ulloa-Mercado RG; Diaz-Tenorio LM; Leyva-Soto LA; Gortáres-Moroyoqui P
    Environ Technol; 2021 Sep; 42(22):3463-3474. PubMed ID: 32072869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedding Fe(0) electrocoagulation in a biologically active As(III) oxidising filter bed.
    Roy M; Kraaijeveld E; Gude JCJ; van Genuchten CM; Rietveld LC; van Halem D
    Water Res; 2024 Mar; 252():121233. PubMed ID: 38330719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled As and Mn Redox Transformations in an Fe(0) Electrocoagulation System: Competition for Reactive Oxidants and Sorption Sites.
    Catrouillet C; Hirosue S; Manetti N; Boureau V; Peña J
    Environ Sci Technol; 2020 Jun; 54(12):7165-7174. PubMed ID: 32364715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment.
    Sadeghi H; Mohammadpour A; Samaei MR; Azhdarpoor A; Hadipoor M; Mehrazmay H; Mousavi Khaneghah A
    Environ Res; 2022 Sep; 212(Pt A):113147. PubMed ID: 35341750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modification of natural siderite and enhanced adsorption of arsenic].
    Zhao K; Guo HM; Li Y; Ren Y
    Huan Jing Ke Xue; 2012 Feb; 33(2):459-68. PubMed ID: 22509582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption removal of arsenic from aqueous solutions and groundwater by isomeric FeOOH.
    Xiong H; Xu S; Zhu S
    Water Sci Technol; 2022 Oct; 86(7):1653-1667. PubMed ID: 36240302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically induced oxidative removal of As(III) from groundwater in a dual-anode sand column.
    Tong M; Yuan S; Wang Z; Luo M; Wang Y
    J Hazard Mater; 2016 Mar; 305():41-50. PubMed ID: 26642445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation.
    Müller S; Behrends T; van Genuchten CM
    Water Res; 2019 May; 155():455-464. PubMed ID: 30870635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abatement of hydrated silica, arsenic, and coexisting ions from groundwater by electrocoagulation using iron electrodes.
    Valentín-Reyes J; Trejo DB; Coreño O; Nava JL
    Chemosphere; 2022 Jun; 297():134144. PubMed ID: 35227747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.