These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38882674)

  • 41. Network Intrusion Detection Method Based on FCWGAN and BiLSTM.
    Ma Z; Li J; Song Y; Wu X; Chen C
    Comput Intell Neurosci; 2022; 2022():6591140. PubMed ID: 35463253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive analysis and recommendation of feature evaluation measures for intrusion detection.
    Binbusayyis A; Vaiyapuri T
    Heliyon; 2020 Jul; 6(7):e04262. PubMed ID: 32685709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Research of Machine Learning Algorithms for the Development of Intrusion Detection Systems in 5G Mobile Networks and Beyond.
    Imanbayev A; Tynymbayev S; Odarchenko R; Gnatyuk S; Berdibayev R; Baikenov A; Kaniyeva N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards Adversarial Robustness with Early Exit Ensembles.
    Qendro L; Mascolo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():313-316. PubMed ID: 36086386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep learning models for electrocardiograms are susceptible to adversarial attack.
    Han X; Hu Y; Foschini L; Chinitz L; Jankelson L; Ranganath R
    Nat Med; 2020 Mar; 26(3):360-363. PubMed ID: 32152582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust image classification against adversarial attacks using elastic similarity measures between edge count sequences.
    Oregi I; Del Ser J; Pérez A; Lozano JA
    Neural Netw; 2020 Aug; 128():61-72. PubMed ID: 32442627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adversarial attack vulnerability of medical image analysis systems: Unexplored factors.
    Bortsova G; González-Gonzalo C; Wetstein SC; Dubost F; Katramados I; Hogeweg L; Liefers B; van Ginneken B; Pluim JPW; Veta M; Sánchez CI; de Bruijne M
    Med Image Anal; 2021 Oct; 73():102141. PubMed ID: 34246850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of predictive performance of intrusion detection system using hybrid ensemble model for secure systems.
    Abbas Q; Hina S; Sajjad H; Zaidi KS; Akbar R
    PeerJ Comput Sci; 2023; 9():e1552. PubMed ID: 37705624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conditional Tabular Generative Adversarial Based Intrusion Detection System for Detecting Ddos and Dos Attacks on the Internet of Things Networks.
    Alabsi BA; Anbar M; Rihan SDA
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Customised Intrusion Detection for an Industrial IoT Heterogeneous Network Based on Machine Learning Algorithms Called FTL-CID.
    Abosata N; Al-Rubaye S; Inalhan G
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning.
    Akshay Kumaar M; Samiayya D; Vincent PMDR; Srinivasan K; Chang CY; Ganesh H
    Front Public Health; 2021; 9():824898. PubMed ID: 35096763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An investigation and comparison of machine learning approaches for intrusion detection in IoMT network.
    Binbusayyis A; Alaskar H; Vaiyapuri T; Dinesh M
    J Supercomput; 2022; 78(15):17403-17422. PubMed ID: 35601090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intrusion Detection in IoT Using Deep Learning.
    Banaamah AM; Ahmad I
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection.
    Rodríguez M; Alesanco Á; Mehavilla L; García J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation.
    Vaiyapuri T; Binbusayyis A
    PeerJ Comput Sci; 2020; 6():e327. PubMed ID: 33816977
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing robustness in video recognition models: Sparse adversarial attacks and beyond.
    Mu R; Marcolino L; Ni Q; Ruan W
    Neural Netw; 2024 Mar; 171():127-143. PubMed ID: 38091756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS).
    Sheikh ZA; Singh Y; Singh PK; Gonçalves PJS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defending Person Detection Against Adversarial Patch Attack by Using Universal Defensive Frame.
    Yu Y; Lee HJ; Lee H; Ro YM
    IEEE Trans Image Process; 2022; 31():6976-6990. PubMed ID: 36318546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In-vehicle network intrusion detection systems: a systematic survey of deep learning-based approaches.
    Luo F; Wang J; Zhang X; Jiang Y; Li Z; Luo C
    PeerJ Comput Sci; 2023; 9():e1648. PubMed ID: 38077582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Hybrid Spider Monkey and Hierarchical Particle Swarm Optimization Approach for Intrusion Detection on Internet of Things.
    Ethala S; Kumarappan A
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.