These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38884195)

  • 41. A scheme for rapid evaluation of the intermolecular three-body polarization effect in water clusters.
    Li XL; Li CM; Zhu JY; Zhou Z; Hao Q; Wang CS
    J Comput Chem; 2023 Feb; 44(5):677-686. PubMed ID: 36408852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion.
    Ballesteros F; Lao KU
    J Chem Theory Comput; 2022 Jan; 18(1):179-191. PubMed ID: 34881906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach.
    Veccham SP; Lee J; Head-Gordon M
    J Chem Phys; 2019 Nov; 151(19):194101. PubMed ID: 31757163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.
    Paesani F
    Acc Chem Res; 2016 Sep; 49(9):1844-51. PubMed ID: 27548325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding intermolecular interactions of large systems in ground state and excited state by using density functional based tight binding methods.
    Xu Y; Friedman R; Wu W; Su P
    J Chem Phys; 2021 May; 154(19):194106. PubMed ID: 34240911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals.
    Horn PR; Mao Y; Head-Gordon M
    Phys Chem Chem Phys; 2016 Aug; 18(33):23067-79. PubMed ID: 27492057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A hybrid approach combining energy density analysis with the interaction energy decomposition method.
    Kawamura Y; Nakai H
    J Comput Chem; 2004 Nov; 25(15):1882-7. PubMed ID: 15376251
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy Decomposition Analysis for Metal Surface-Adsorbate Interactions by Block Localized Wave Functions.
    Staub R; Iannuzzi M; Khaliullin RZ; Steinmann SN
    J Chem Theory Comput; 2019 Jan; 15(1):265-275. PubMed ID: 30462497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory.
    Levine DS; Head-Gordon M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12649-12656. PubMed ID: 29158379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States.
    Zhang J; Tang Z; Zhang X; Zhu H; Zhao R; Lu Y; Gao J
    J Chem Theory Comput; 2023 Mar; 19(6):1777-1789. PubMed ID: 36917687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals.
    Horn PR; Sundstrom EJ; Baker TA; Head-Gordon M
    J Chem Phys; 2013 Apr; 138(13):134119. PubMed ID: 23574220
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy decomposition analysis method for metallic systems.
    Chen H; Skylaris CK
    Phys Chem Chem Phys; 2022 Jan; 24(3):1702-1711. PubMed ID: 34982081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy.
    Ghosh S; Neese F; Izsák R; Bistoni G
    J Chem Theory Comput; 2021 Jun; 17(6):3348-3359. PubMed ID: 34037397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water complexes of cytochrome P450: insights from energy decomposition analysis.
    Thellamurege N; Hirao H
    Molecules; 2013 Jun; 18(6):6782-91. PubMed ID: 23752465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The many-body expansion for aqueous systems revisited: III. Hofmeister ion-water interactions.
    Herman KM; Heindel JP; Xantheas SS
    Phys Chem Chem Phys; 2021 May; 23(19):11196-11210. PubMed ID: 33899854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Valence Bond Theory Allows a Generalized Description of Hydrogen Bonding.
    Shaik S; Danovich D; Zare RN
    J Am Chem Soc; 2023 Sep; 145(36):20132-20140. PubMed ID: 37664980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding Non-Covalent Interactions: Correlated Energy Decomposition Analysis and Applications to Halogen Bonding.
    Gonthier JF; Thirman J; Head-Gordon M
    Chimia (Aarau); 2018 Apr; 72(4):193-198. PubMed ID: 29720307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of an Advanced Force Field for Water Using Variational Energy Decomposition Analysis.
    Das AK; Urban L; Leven I; Loipersberger M; Aldossary A; Head-Gordon M; Head-Gordon T
    J Chem Theory Comput; 2019 Sep; 15(9):5001-5013. PubMed ID: 31408601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of Excimers in Isoquinolinyl Pyrazolate Pt(II) Complexes: Role of Cooperativity Effects.
    Sukpattanacharoen C; Kumar P; Chi Y; Kungwan N; Escudero D
    Inorg Chem; 2020 Dec; 59(24):18253-18263. PubMed ID: 33289543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing radical-molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals.
    Mao Y; Levine DS; Loipersberger M; Horn PR; Head-Gordon M
    Phys Chem Chem Phys; 2020 Jun; 22(23):12867-12885. PubMed ID: 32510096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.