These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38884478)

  • 1. Religious Chanting and Self-Related Brain Regions: A Multi-Modal Neuroimaging Study.
    Sik HH; Skouras S; Gao J; Leung HK; Ng SM; Lee KC; Wu BWY
    J Vis Exp; 2024 May; (207):. PubMed ID: 38884478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive Religious Chanting Invokes Positive Emotional Schema to Counterbalance Fear: A Multi-Modal Functional and Structural MRI Study.
    Gao J; Skouras S; Leung HK; Wu BWY; Wu H; Chang C; Sik HH
    Front Behav Neurosci; 2020; 14():548856. PubMed ID: 33328917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neurophysiological correlates of religious chanting.
    Gao J; Leung HK; Wu BWY; Skouras S; Sik HH
    Sci Rep; 2019 Mar; 9(1):4262. PubMed ID: 30862790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive Religious Chanting Modulates the Late-Stage Brain Response to Fear- and Stress-Provoking Pictures.
    Gao J; Fan J; Wu BW; Halkias GT; Chau M; Fung PC; Chang C; Zhang Z; Hung YS; Sik H
    Front Psychol; 2016; 7():2055. PubMed ID: 28119651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the Neurophysiological Response to Fearful and Stressful Stimuli Through Repetitive Religious Chanting.
    Sik HH; Halkias GT; Chang C; Gao J; Leung HK; Wu BWY
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34806706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal Imaging of Repetitive Transcranial Magnetic Stimulation Effect on Brain Network: A Combined Electroencephalogram and Functional Magnetic Resonance Imaging Study.
    Chen Y; Cha YH; Li C; Shou G; Gleghorn D; Ding L; Yuan H
    Brain Connect; 2019 May; 9(4):311-321. PubMed ID: 30803271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging.
    Nguyen T; Potter T; Grossman R; Zhang Y
    J Neural Eng; 2018 Jun; 15(3):036017. PubMed ID: 29214978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.
    Val-Laillet D; Aarts E; Weber B; Ferrari M; Quaresima V; Stoeckel LE; Alonso-Alonso M; Audette M; Malbert CH; Stice E
    Neuroimage Clin; 2015; 8():1-31. PubMed ID: 26110109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG/MEG source imaging using fMRI informed time-variant constraints.
    Xu J; Sheng J; Qian T; Luo YJ; Gao JH
    Hum Brain Mapp; 2018 Apr; 39(4):1700-1711. PubMed ID: 29293277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent EEG and Functional MRI Recording and Integration Analysis for Dynamic Cortical Activity Imaging.
    Nguyen T; Potter T; Karmonik C; Grossman R; Zhang Y
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task.
    Walz JM; Goldman RI; Carapezza M; Muraskin J; Brown TR; Sajda P
    Neuroimage; 2014 Nov; 102 Pt 1(0 1):229-39. PubMed ID: 23962956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to use fMRI functional localizers to improve EEG/MEG source estimation.
    Cottereau BR; Ales JM; Norcia AM
    J Neurosci Methods; 2015 Jul; 250():64-73. PubMed ID: 25088693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-fMRI reciprocal functional neuroimaging.
    Yang L; Liu Z; He B
    Clin Neurophysiol; 2010 Aug; 121(8):1240-50. PubMed ID: 20378397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian fusion and multimodal DCM for EEG and fMRI.
    Wei H; Jafarian A; Zeidman P; Litvak V; Razi A; Hu D; Friston KJ
    Neuroimage; 2020 May; 211():116595. PubMed ID: 32027965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints.
    Liu Z; He B
    Neuroimage; 2008 Feb; 39(3):1198-214. PubMed ID: 18036833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time.
    Cichy RM; Oliva A
    Neuron; 2020 Sep; 107(5):772-781. PubMed ID: 32721379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusing concurrent EEG-fMRI with dynamic causal modeling: application to effective connectivity during face perception.
    Nguyen VT; Breakspear M; Cunnington R
    Neuroimage; 2014 Nov; 102 Pt 1():60-70. PubMed ID: 23850464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic coupling between fMRI local connectivity and interictal EEG in focal epilepsy: A wavelet analysis approach.
    Omidvarnia A; Pedersen M; Vaughan DN; Walz JM; Abbott DF; Zalesky A; Jackson GD
    Hum Brain Mapp; 2017 Nov; 38(11):5356-5374. PubMed ID: 28737272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep EEG source localization via EMD-based fMRI high spatial frequency.
    Moradi N; Goodyear BG; Sotero RC
    PLoS One; 2024; 19(3):e0299284. PubMed ID: 38427616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.