These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 38884673)
1. Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN. Yoshimura H; Kawahara D; Saito A; Ozawa S; Nagata Y Phys Eng Sci Med; 2024 Sep; 47(3):1227-1243. PubMed ID: 38884673 [TBL] [Abstract][Full Text] [Related]
2. A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI. Yin P; Mao N; Zhao C; Wu J; Chen L; Hong N J Magn Reson Imaging; 2019 Mar; 49(3):752-759. PubMed ID: 30430686 [TBL] [Abstract][Full Text] [Related]
3. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Lao J; Chen Y; Li ZC; Li Q; Zhang J; Liu J; Zhai G Sci Rep; 2017 Sep; 7(1):10353. PubMed ID: 28871110 [TBL] [Abstract][Full Text] [Related]
4. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. Zhong S; Ren JX; Yu ZP; Peng YD; Yu CW; Deng D; Xie Y; He ZQ; Duan H; Wu B; Li H; Yang WZ; Bai Y; Sai K; Chen YS; Guo CC; Li DP; Cheng Y; Zhang XH; Mou YG J Neurosurg; 2023 Aug; 139(2):305-314. PubMed ID: 36461822 [TBL] [Abstract][Full Text] [Related]
5. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival. Zhang X; Lu H; Tian Q; Feng N; Yin L; Xu X; Du P; Liu Y Eur Radiol; 2019 Oct; 29(10):5528-5538. PubMed ID: 30847586 [TBL] [Abstract][Full Text] [Related]
6. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472 [TBL] [Abstract][Full Text] [Related]
7. MRI-based radiomics features for the non-invasive prediction of FIGO stage in cervical carcinoma: A multi-center study. Liu Y; Dong TF; Li PJ; Chen LB; Song T Magn Reson Imaging; 2024 Jul; 110():170-175. PubMed ID: 38035947 [TBL] [Abstract][Full Text] [Related]
8. Radiomic nomogram based on lumbar spine magnetic resonance images to diagnose osteoporosis. Kang SR; Wang K Acta Radiol; 2024 Aug; 65(8):950-958. PubMed ID: 38651258 [TBL] [Abstract][Full Text] [Related]
9. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis. Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935 [TBL] [Abstract][Full Text] [Related]
10. Survival prediction of patients suffering from glioblastoma based on two-branch DenseNet using multi-channel features. Fu X; Chen C; Li D Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):207-217. PubMed ID: 33462763 [TBL] [Abstract][Full Text] [Related]
12. A radiomics-clinical nomogram for preoperative prediction of IDH1 mutation in primary glioblastoma multiforme. Su X; Sun H; Chen N; Roberts N; Yang X; Wang W; Li J; Huang X; Gong Q; Yue Q Clin Radiol; 2020 Dec; 75(12):963.e7-963.e15. PubMed ID: 32921406 [TBL] [Abstract][Full Text] [Related]
13. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Carré A; Klausner G; Edjlali M; Lerousseau M; Briend-Diop J; Sun R; Ammari S; Reuzé S; Alvarez Andres E; Estienne T; Niyoteka S; Battistella E; Vakalopoulou M; Dhermain F; Paragios N; Deutsch E; Oppenheim C; Pallud J; Robert C Sci Rep; 2020 Jul; 10(1):12340. PubMed ID: 32704007 [TBL] [Abstract][Full Text] [Related]
14. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Chaddad A; Sabri S; Niazi T; Abdulkarim B Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951 [TBL] [Abstract][Full Text] [Related]
15. Radiomics Analysis Based on Magnetic Resonance Imaging for Preoperative Overall Survival Prediction in Isocitrate Dehydrogenase Wild-Type Glioblastoma. Wang S; Xiao F; Sun W; Yang C; Ma C; Huang Y; Xu D; Li L; Chen J; Li H; Xu H Front Neurosci; 2021; 15():791776. PubMed ID: 35153659 [TBL] [Abstract][Full Text] [Related]
16. An MRI-based radiomics signature and clinical characteristics for survival prediction in early-stage cervical cancer. Zheng RR; Cai MT; Lan L; Huang XW; Yang YJ; Powell M; Lin F Br J Radiol; 2022 Jan; 95(1129):20210838. PubMed ID: 34797703 [TBL] [Abstract][Full Text] [Related]
17. Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Um H; Tixier F; Bermudez D; Deasy JO; Young RJ; Veeraraghavan H Phys Med Biol; 2019 Aug; 64(16):165011. PubMed ID: 31272093 [TBL] [Abstract][Full Text] [Related]
18. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702 [TBL] [Abstract][Full Text] [Related]
19. Characterizing the relationship between MRI radiomics and AHR expression and deriving a predictive model for prognostic assessment in glioblastoma. Liu C; Xu D; Meng L; Li H; Fu Z; Yan M; Hu X; Wang Y Neuroradiology; 2024 Aug; 66(8):1291-1299. PubMed ID: 38896238 [TBL] [Abstract][Full Text] [Related]
20. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy. Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]