These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38884751)

  • 1. Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms.
    Guadix JA; Ruiz-Villalba A; Pérez-Pomares JM
    Adv Exp Med Biol; 2024; 1441():817-831. PubMed ID: 38884751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology--a position statement of the development, anatomy, and pathology ESC Working Group.
    Pérez-Pomares JM; de la Pompa JL; Franco D; Henderson D; Ho SY; Houyel L; Kelly RG; Sedmera D; Sheppard M; Sperling S; Thiene G; van den Hoff M; Basso C
    Cardiovasc Res; 2016 Feb; 109(2):204-16. PubMed ID: 26811390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development.
    Ng A; Wong M; Viviano B; Erlich JM; Alba G; Pflederer C; Jay PY; Saunders S
    Dev Biol; 2009 Nov; 335(1):208-15. PubMed ID: 19733558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary artery anomalies. Part I: Recent insights from molecular embryology.
    von Kodolitsch Y; Ito WD; Franzen O; Lund GK; Koschyk DH; Meinertz T
    Z Kardiol; 2004 Dec; 93(12):929-37. PubMed ID: 15599567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal and anomalous coronary arteries: definitions and classification.
    Angelini P
    Am Heart J; 1989 Feb; 117(2):418-34. PubMed ID: 2644796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental defects of coronary vasculature in rat embryos administered bis-diamine.
    Hanato T; Nakagawa M; Okamoto N; Nishijima S; Fujino H; Shimada M; Takeuchi Y; Imanaka-Yoshida K
    Birth Defects Res B Dev Reprod Toxicol; 2011 Feb; 92(1):10-6. PubMed ID: 21312320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anatomy and development of normal and abnormal coronary arteries.
    Spicer DE; Henderson DJ; Chaudhry B; Mohun TJ; Anderson RH
    Cardiol Young; 2015 Dec; 25(8):1493-503. PubMed ID: 26675596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The normal and abnormal anatomy of the coronary arteries.
    Loukas M; Groat C; Khangura R; Owens DG; Anderson RH
    Clin Anat; 2009 Jan; 22(1):114-28. PubMed ID: 19097062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Congenital coronary anomalies are not uncommon and consideration should be given to screening first degree relatives.
    Mordaunt DA
    Pathology; 2014 Dec; 46(7):669-70. PubMed ID: 25393268
    [No Abstract]   [Full Text] [Related]  

  • 10. The clinical anatomy of the coronary arteries.
    Loukas M; Sharma A; Blaak C; Sorenson E; Mian A
    J Cardiovasc Transl Res; 2013 Apr; 6(2):197-207. PubMed ID: 23423864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes.
    Basso C; Maron BJ; Corrado D; Thiene G
    J Am Coll Cardiol; 2000 May; 35(6):1493-501. PubMed ID: 10807452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary arteries in fetal life: physiology, malformations and the "heart-sparing effect".
    Chaoui R
    Acta Paediatr Suppl; 2004 Dec; 93(446):6-12. PubMed ID: 15702664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sudden unexpected death resulting from an anomalous hypoplastic left coronary artery.
    McConnell SE; Collins KA
    J Forensic Sci; 1998 May; 43(3):708-11. PubMed ID: 9608711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Congenital coronary artery anomalies: the pediatric perspective.
    Burch GH; Sahn DJ
    Coron Artery Dis; 2001 Dec; 12(8):605-16. PubMed ID: 11811325
    [No Abstract]   [Full Text] [Related]  

  • 15. The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning.
    Théveniau-Ruissy M; Dandonneau M; Mesbah K; Ghez O; Mattei MG; Miquerol L; Kelly RG
    Circ Res; 2008 Jul; 103(2):142-8. PubMed ID: 18583714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors.
    Crispino JD; Lodish MB; Thurberg BL; Litovsky SH; Collins T; Molkentin JD; Orkin SH
    Genes Dev; 2001 Apr; 15(7):839-44. PubMed ID: 11297508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets.
    Phillips HM; Mahendran P; Singh E; Anderson RH; Chaudhry B; Henderson DJ
    Cardiovasc Res; 2013 Aug; 99(3):452-60. PubMed ID: 23723064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sudden death due to congenital malformation of coronary arteries.
    Kunz J
    Z Rechtsmed; 1989; 102(2-3):217-8. PubMed ID: 2711773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected sudden death of a 12-year-old male with congenital single coronary artery.
    Ohshima T; Lin Z; Sato Y
    Forensic Sci Int; 1996 Sep; 82(2):177-81. PubMed ID: 8885376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New look at an old ring.
    Latson LA
    Catheter Cardiovasc Interv; 2008 Mar; 71(4):572. PubMed ID: 18307239
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.