These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38884837)
1. Phytoplankton-chytrid-zooplankton dynamics via a reaction-diffusion-advection mycoloop model. Zhang J; Han X; Wang H J Math Biol; 2024 Jun; 89(2):15. PubMed ID: 38884837 [TBL] [Abstract][Full Text] [Related]
2. Mycoloop: Modeling phytoplankton-chytrid-zooplankton interactions in aquatic food webs. Chen M; Gao H; Zhang J Math Biosci; 2024 Feb; 368():109134. PubMed ID: 38158013 [TBL] [Abstract][Full Text] [Related]
3. Fungal Parasite Transmission in a Planktonic Ecosystem Under Light and Nutrient Constraints. Yan Y; Ji J; Wang H Bull Math Biol; 2024 Oct; 86(11):136. PubMed ID: 39397103 [TBL] [Abstract][Full Text] [Related]
4. Mycoloop: chytrids in aquatic food webs. Kagami M; Miki T; Takimoto G Front Microbiol; 2014; 5():166. PubMed ID: 24795703 [TBL] [Abstract][Full Text] [Related]
5. Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Almocera AES; Hsu SB; Sy PW Math Biosci Eng; 2018 Dec; 16(1):516-537. PubMed ID: 30674130 [TBL] [Abstract][Full Text] [Related]
6. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Frenken T; Miki T; Kagami M; Van de Waal DB; Van Donk E; Rohrlack T; Gsell AS Ecology; 2020 Jan; 101(1):e02900. PubMed ID: 31544240 [TBL] [Abstract][Full Text] [Related]
7. The chytrid insurance hypothesis: integrating parasitic chytrids into a biodiversity-ecosystem functioning framework for phytoplankton-zooplankton population dynamics. Abonyi A; Fornberg J; Rasconi S; Ptacnik R; Kainz MJ; Lafferty KD Oecologia; 2024 Feb; 204(2):279-288. PubMed ID: 38366067 [TBL] [Abstract][Full Text] [Related]
8. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235 [TBL] [Abstract][Full Text] [Related]
9. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Gerphagnon M; Agha R; Martin-Creuzburg D; Bec A; Perriere F; Rad-Menéndez C; Gachon CMM; Wolinska J Environ Microbiol; 2019 Mar; 21(3):949-958. PubMed ID: 30507060 [TBL] [Abstract][Full Text] [Related]
10. Phytoplankton chytridiomycosis: community structure and infectivity of fungal parasites in aquatic ecosystems. Rasconi S; Niquil N; Sime-Ngando T Environ Microbiol; 2012 Aug; 14(8):2151-70. PubMed ID: 22309120 [TBL] [Abstract][Full Text] [Related]
11. Critical role of parasite-mediated energy pathway on community response to nutrient enrichment. Thongthaisong P; Kasada M; Grossart HP; Wollrab S Ecol Evol; 2022 Dec; 12(12):e9622. PubMed ID: 36523515 [TBL] [Abstract][Full Text] [Related]
12. Enumeration of Parasitic Chytrid Zoospores in the Columbia River via Quantitative PCR. Maier MA; Peterson TD Appl Environ Microbiol; 2016 Jul; 82(13):3857-3867. PubMed ID: 27107109 [TBL] [Abstract][Full Text] [Related]
13. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Frenken T; Alacid E; Berger SA; Bourne EC; Gerphagnon M; Grossart HP; Gsell AS; Ibelings BW; Kagami M; Küpper FC; Letcher PM; Loyau A; Miki T; Nejstgaard JC; Rasconi S; Reñé A; Rohrlack T; Rojas-Jimenez K; Schmeller DS; Scholz B; Seto K; Sime-Ngando T; Sukenik A; Van de Waal DB; Van den Wyngaert S; Van Donk E; Wolinska J; Wurzbacher C; Agha R Environ Microbiol; 2017 Oct; 19(10):3802-3822. PubMed ID: 28618196 [TBL] [Abstract][Full Text] [Related]
14. Modelling phytoplankton-virus interactions: phytoplankton blooms and lytic virus transmission. Zhang J; Yan Y; Shi J J Math Biol; 2024 May; 88(6):77. PubMed ID: 38695878 [TBL] [Abstract][Full Text] [Related]
15. Trophic position, elemental ratios and nitrogen transfer in a planktonic host-parasite-consumer food chain including a fungal parasite. Sánchez Barranco V; Van der Meer MTJ; Kagami M; Van den Wyngaert S; Van de Waal DB; Van Donk E; Gsell AS Oecologia; 2020 Dec; 194(4):541-554. PubMed ID: 32803339 [TBL] [Abstract][Full Text] [Related]
16. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus. Buck JC; Scholz KI; Rohr JR; Blaustein AR Oecologia; 2015 May; 178(1):239-48. PubMed ID: 25432573 [TBL] [Abstract][Full Text] [Related]
17. Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Meng XY; Li J Math Biosci Eng; 2019 Dec; 17(3):1973-2002. PubMed ID: 32233519 [TBL] [Abstract][Full Text] [Related]
18. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Sime-Ngando T Front Microbiol; 2012; 3():361. PubMed ID: 23091469 [TBL] [Abstract][Full Text] [Related]
19. Modeling Refuge Effect of Submerged Macrophytes in Lake System. Lv D; Fan M; Kang Y; Blanco K Bull Math Biol; 2016 Apr; 78(4):662-694. PubMed ID: 27055658 [TBL] [Abstract][Full Text] [Related]
20. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Barbera E; Consolo G; Valenti G Math Biosci Eng; 2015 Jun; 12(3):451-72. PubMed ID: 25811556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]