These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38884891)

  • 1. Investigation of cardiopulmonary bypass parameters on embolus transport in a patient-specific aorta.
    Arefin NM; Good BC
    Biomech Model Mechanobiol; 2024 Oct; 23(5):1765-1780. PubMed ID: 38884891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Trendelenburg position effectiveness by varying cardiopulmonary bypass flow.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2023 Sep; 38(6):1213-1221. PubMed ID: 35703549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of risks for cerebral embolism associated with the hemodynamics of cardiopulmonary bypass cannula: a numerical model.
    Avrahami I; Dilmoney B; Azuri A; Brand M; Cohen O; Shani L; Nir RR; Bolotin G
    Artif Organs; 2013 Oct; 37(10):857-65. PubMed ID: 24138494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.
    Piskin S; Ündar A; Pekkan K
    Artif Organs; 2015 Oct; 39(10):E164-75. PubMed ID: 25940836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aortic cannula orientation and flow impacts embolic trajectories: computational cardiopulmonary bypass.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2020 Jul; 35(5):409-416. PubMed ID: 31814525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow and emboli transport patterns during venoarterial extracorporeal membrane oxygenation: A computational fluid dynamics study.
    Khamooshi M; Wickramarachchi A; Byrne T; Seman M; Fletcher DF; Burrell A; Gregory SD
    Comput Biol Med; 2024 Apr; 172():108263. PubMed ID: 38489988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of hemodynamics during cardiopulmonary bypass: A multiscale multiphysics fluid-structure-interaction study.
    Neidlin M; Sonntag SJ; Schmitz-Rode T; Steinseifer U; Kaufmann TA
    Med Eng Phys; 2016 Apr; 38(4):380-90. PubMed ID: 26908181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent predilections of cardiogenic embolic transport.
    Carr IA; Nemoto N; Schwartz RS; Shadden SC
    Am J Physiol Heart Circ Physiol; 2013 Sep; 305(5):H732-9. PubMed ID: 23792681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.
    Gramigna V; Caruso MV; Rossi M; Serraino GF; Renzulli A; Fragomeni G
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1574-81. PubMed ID: 24962383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aortic cannulation depth on air emboli transport during cardiopulmonary bypass: A computational study.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2023 Jul; 38(5):993-1001. PubMed ID: 35603520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures.
    Dhami R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input.
    Hugenroth K; Borchardt R; Ritter P; Groß-Hardt S; Meyns B; Verbelen T; Steinseifer U; Kaufmann TAS; Engelmann UM
    Sci Rep; 2021 Aug; 11(1):16800. PubMed ID: 34408243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel emboli protection cannula during cardiac surgery: first animal study.
    Shani L; Cohen O; Beckerman Z; Nir RR; Bolotin G
    Asian Cardiovasc Thorac Ann; 2014 Jan; 22(1):25-30. PubMed ID: 24585639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of neonatal aortic cannula jet flow regimes for improved cardiopulmonary bypass.
    Menon PG; Teslovich N; Chen CY; Undar A; Pekkan K
    J Biomech; 2013 Jan; 46(2):362-72. PubMed ID: 23195624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic approach to the understanding and redesigning of cardiopulmonary bypass.
    Groom RC
    Semin Cardiothorac Vasc Anesth; 2005 Jun; 9(2):159-61. PubMed ID: 15920642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral emboli during cardiopulmonary bypass: effect of perfusionist interventions and aortic cannulas.
    Borger MA; Feindel CM
    J Extra Corpor Technol; 2002 Mar; 34(1):29-33. PubMed ID: 11911626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emboli formation rather than inflammatory mediators are responsible for increased cerebral water content after conventional and assisted beating-heart myocardial revascularization in a porcine model.
    Bierbach B; Meier M; Kasper-König W; Heimann A; Alessandri B; Horstick G; Oelert H; Kempski O
    Stroke; 2008 Jan; 39(1):213-9. PubMed ID: 18063820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of intrinsic lumped parameter modeling into computational fluid dynamics studies of cardiopulmonary bypass.
    Kaufmann TA; Neidlin M; Büsen M; Sonntag SJ; Steinseifer U
    J Biomech; 2014 Feb; 47(3):729-35. PubMed ID: 24365093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of a novel aortic cannula aimed at reducing cerebral embolism during cardiovascular bypass surgery.
    Avrahami I; Dilmoney B; Hirshorn O; Brand M; Cohen O; Shani L; Nir RR; Bolotin G
    J Biomech; 2013 Jan; 46(2):354-61. PubMed ID: 23195623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.