These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38884893)

  • 1. Autonomous navigation of catheters and guidewires in mechanical thrombectomy using inverse reinforcement learning.
    Robertshaw H; Karstensen L; Jackson B; Granados A; Booth TC
    Int J Comput Assist Radiol Surg; 2024 Jun; ():. PubMed ID: 38884893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence in the autonomous navigation of endovascular interventions: a systematic review.
    Robertshaw H; Karstensen L; Jackson B; Sadati H; Rhode K; Ourselin S; Granados A; Booth TC
    Front Hum Neurosci; 2023; 17():1239374. PubMed ID: 37600553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-based autonomous vascular guidewire navigation without human demonstration in the venous system of a porcine liver.
    Karstensen L; Ritter J; Hatzl J; Pätz T; Langejürgen J; Uhl C; Mathis-Ullrich F
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2033-2040. PubMed ID: 35604490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A zero-shot reinforcement learning strategy for autonomous guidewire navigation.
    Scarponi V; Duprez M; Nageotte F; Cotin S
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1185-1192. PubMed ID: 38627313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrent neural networks for generalization towards the vessel geometry in autonomous endovascular guidewire navigation in the aortic arch.
    Karstensen L; Ritter J; Hatzl J; Ernst F; Langejürgen J; Uhl C; Mathis-Ullrich F
    Int J Comput Assist Radiol Surg; 2023 Sep; 18(9):1735-1744. PubMed ID: 37245181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning.
    Lee H; Jeong J
    Front Neurorobot; 2023; 17():1210442. PubMed ID: 37744086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function.
    Jeng SL; Chiang C
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation.
    Wu J; Zhou Y; Yang H; Huang Z; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging the Gap Between Imitation Learning and Inverse Reinforcement Learning.
    Piot B; Geist M; Pietquin O
    IEEE Trans Neural Netw Learn Syst; 2017 Aug; 28(8):1814-1826. PubMed ID: 27164607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces.
    Tan J; Zhang X; Wu S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative verification of control methodology for robotic interventional neuroradiology procedures.
    Jackson B; Crinnion W; De Iturrate Reyzabal M; Robertshaw H; Bergeles C; Rhode K; Booth T
    Int J Comput Assist Radiol Surg; 2023 Nov; 18(11):1977-1986. PubMed ID: 37460915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Visualisation of Navigation Catheters for Endovascular Procedures Using a 3D Hub and Fiber Optic RealShape Technology: Phantom Study Results.
    Bydlon TM; Torjesen A; Fokkenrood S; Di Tullio A; Flexman ML
    EJVES Vasc Forum; 2023; 59():24-30. PubMed ID: 37389371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery.
    Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM
    Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Thrombectomy using Distal Access Catheters: Current Status and Future Prospects.
    Nayak S
    J Neuroimaging; 2020 Nov; 30(6):754-761. PubMed ID: 33142040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.