These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38884935)

  • 1. Bibliometric analysis of research hotspots and trends in the field of volatile organic compound (VOC) emission accounting.
    Huang W; Xiao Y; Li X; Wu C; Zhang C; Wang X
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42547-42573. PubMed ID: 38884935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review.
    Duan C; Liao H; Wang K; Ren Y
    Environ Res; 2023 Jan; 216(Pt 1):114386. PubMed ID: 36162470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source characterization of volatile organic compounds affecting the air quality in a coastal urban area of South Texas.
    Sanchez M; Karnae S; John K
    Int J Environ Res Public Health; 2008 Sep; 5(3):130-8. PubMed ID: 19139530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China.
    Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C
    Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Past and future ozone trends in California's South Coast Air Basin: reconciliation of ambient measurements with past and projected emission inventories.
    Fujita EM; Campbell DE; Stockwell WR; Lawson DR
    J Air Waste Manag Assoc; 2013 Jan; 63(1):54-69. PubMed ID: 23447864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential.
    Xiong Y; Zhou J; Xing Z; Du K
    Environ Res; 2020 Dec; 191():110217. PubMed ID: 32971083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory.
    Li L; Zhang D; Hu W; Yang Y; Zhang S; Yuan R; Lv P; Zhang W; Zhang Y; Zhang Y
    Sci Total Environ; 2023 Mar; 865():161235. PubMed ID: 36586688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts.
    Li G; Wei W; Shao X; Nie L; Wang H; Yan X; Zhang R
    J Environ Sci (China); 2018 May; 67():78-88. PubMed ID: 29778176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China: Emission characteristics, ozone formation and secondary organic aerosol formation.
    Jin B; Zhu R; Mei H; Wang M; Zu L; Yu S; Zhang R; Li S; Bao X
    Environ Res; 2021 Sep; 200():111463. PubMed ID: 34111436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.
    Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H
    Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying hotspots based on high-resolution emission inventory of volatile organic compounds: A case study in China.
    Liu X; Yan F; Hua H; Yuan Z
    J Environ Manage; 2021 Jun; 288():112419. PubMed ID: 33827028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciated VOCs emission estimate for a typical petrochemical manufacturing plant in China using inverse-dispersion calculation method.
    Wei W; Wang Y; Yang G; Yue L; Cheng S
    Environ Monit Assess; 2018 Jul; 190(8):451. PubMed ID: 29982920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers.
    Geng C; Yang W; Sun X; Wang X; Bai Z; Zhang X
    J Environ Sci (China); 2019 Sep; 83():64-72. PubMed ID: 31221388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China.
    Wang R; Wang X; Cheng S; Wang K; Cheng L; Zhu J; Zheng H; Duan W
    Sci Total Environ; 2022 Feb; 809():151134. PubMed ID: 34695460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China.
    Lv D; Lu S; He S; Song K; Shao M; Xie S; Gong Y
    Chemosphere; 2021 Oct; 281():130653. PubMed ID: 34289639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements.
    Brantley HL; Thoma ED; Eisele AP
    J Air Waste Manag Assoc; 2015 Sep; 65(9):1072-82. PubMed ID: 26067676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Fingerprint and Atmospheric Activity of Volatile Organic Compounds from Typical Industrial Emissions.
    Gu X; Chen K; Cai M; Yin Z; Liu X; Li X
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds.
    Liu CC; Chen WH; Yuan CS; Lin C
    Sci Total Environ; 2014 Feb; 470-471():311-23. PubMed ID: 24144936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China.
    Hu Y; Shi B; Yuan X; Zheng C; Sha Q; Yu Y; Huang Z; Zheng J
    J Environ Sci (China); 2023 Jan; 123():430-445. PubMed ID: 36522004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.