These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38885277)

  • 1. Computational design of Periplasmic binding protein biosensors guided by molecular dynamics.
    O'Shea JM; Doerner P; Richardson A; Wood CW
    PLoS Comput Biol; 2024 Jun; 20(6):e1012212. PubMed ID: 38885277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opening and closing motions in the periplasmic vitamin B12 binding protein BtuF.
    Kandt C; Xu Z; Tieleman DP
    Biochemistry; 2006 Nov; 45(44):13284-92. PubMed ID: 17073449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of the bacterial periplasmic heme binding proteins ShuT and PhuT.
    Liu M; Su JG; Kong R; Sun TG; Tan JJ; Chen WZ; Wang CX
    Biophys Chem; 2008 Nov; 138(1-2):42-9. PubMed ID: 18818010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.
    Edwards KA; Baeumner AJ
    Anal Chem; 2013 Mar; 85(5):2770-8. PubMed ID: 23411612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maltose-binding protein: a versatile platform for prototyping biosensing.
    Medintz IL; Deschamps JR
    Curr Opin Biotechnol; 2006 Feb; 17(1):17-27. PubMed ID: 16413768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations reveal that apo-HisJ can sample a closed conformation.
    Chu BC; Chan DI; DeWolf T; Periole X; Vogel HJ
    Proteins; 2014 Mar; 82(3):386-98. PubMed ID: 23966221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion.
    Ribeiro LF; Amarelle V; Ribeiro LFC; Guazzaroni ME
    Biomed Res Int; 2019; 2019():4798793. PubMed ID: 30719443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping open and closed forms of FitE: a group III periplasmic binding protein.
    Shi R; Proteau A; Wagner J; Cui Q; Purisima EO; Matte A; Cygler M
    Proteins; 2009 May; 75(3):598-609. PubMed ID: 19004000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids.
    Haloi N; Huang S; Nichols AL; Fine EJ; Friesenhahn NJ; Marotta CB; Dougherty DA; Lindahl E; Howard RJ; Mayo SL; Lester HA
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38302088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of Type III periplasmic proteins VcFhuD and VcHutB reveal molecular basis of their distinctive ligand binding properties.
    Agarwal S; Dey S; Ghosh B; Biswas M; Dasgupta J
    Sci Rep; 2017 Feb; 7():42812. PubMed ID: 28216648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational biology: Biosensor design.
    DeGrado WF
    Nature; 2003 May; 423(6936):132-3. PubMed ID: 12736670
    [No Abstract]   [Full Text] [Related]  

  • 13. Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein.
    Bermejo GA; Strub MP; Ho C; Tjandra N
    Biochemistry; 2010 Mar; 49(9):1893-902. PubMed ID: 20141110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation.
    Allert MJ; Hellinga HW
    Biochemistry; 2022 Feb; 61(4):276-293. PubMed ID: 35084821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein.
    Donaldson T; Iozzino L; Deacon LJ; Billones H; Ausili A; D'Auria S; Dattelbaum JD
    Anal Biochem; 2017 May; 525():60-66. PubMed ID: 28259516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy.
    Vercillo NC; Herald KJ; Fox JM; Der BS; Dattelbaum JD
    Protein Sci; 2007 Mar; 16(3):362-8. PubMed ID: 17242374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B
    Zhou L; Wang D; Iftikhar M; Lu Y; Zhou M
    Int J Biol Macromol; 2021 Sep; 187():350-360. PubMed ID: 34303738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding.
    Li L; Ghimire-Rijal S; Lucas SL; Stanley CB; Wright E; Agarwal PK; Myles DA; Cuneo MJ
    Biochemistry; 2017 Oct; 56(40):5328-5337. PubMed ID: 28876049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping periplasmic binding protein oligosaccharide recognition with neutron crystallography.
    Shukla S; Myles DA; Cuneo MJ
    Sci Rep; 2022 Oct; 12(1):17647. PubMed ID: 36271099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the mechanism of the BtuF periplasmic-binding protein for vitamin B12.
    Liu M; Sun T; Hu J; Chen W; Wang C
    Biophys Chem; 2008 Jun; 135(1-3):19-24. PubMed ID: 18358587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.