BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38885280)

  • 21. Genomic and virulence analysis of in vitro cultured Cryptosporidium parvum.
    Yarlett N; Morada M; Schaefer DA; Ackman K; Carranza E; Baptista RP; Riggs MW; Kissinger JC
    PLoS Pathog; 2024 Feb; 20(2):e1011992. PubMed ID: 38416794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morpholino-mediated in vivo silencing of Cryptosporidium parvum lactate dehydrogenase decreases oocyst shedding and infectivity.
    Zhang X; Kim CY; Worthen T; Witola WH
    Int J Parasitol; 2018 Jul; 48(8):649-656. PubMed ID: 29530646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach.
    Edwards H; Thompson RC; Koh WH; Clode PL
    Mol Cell Probes; 2012 Feb; 26(1):21-8. PubMed ID: 22100878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Conditional Protein Degradation System To Study Essential Gene Function in Cryptosporidium parvum.
    Choudhary HH; Nava MG; Gartlan BE; Rose S; Vinayak S
    mBio; 2020 Aug; 11(4):. PubMed ID: 32843543
    [No Abstract]   [Full Text] [Related]  

  • 25. Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite.
    Edwinson A; Widmer G; McEvoy J
    Int J Parasitol; 2016 Jan; 46(1):67-74. PubMed ID: 26432292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro Culture of Cryptosporidium parvum Using Stem Cell-Derived Intestinal Epithelial Monolayers.
    Wilke G; Wang Y; Ravindran S; Stappenbeck T; Witola WH; Sibley LD
    Methods Mol Biol; 2020; 2052():351-372. PubMed ID: 31452172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis).
    Li F; Zhang Z; Hu S; Zhao W; Zhao J; Kváč M; Guo Y; Li N; Feng Y; Xiao L
    Parasit Vectors; 2020 Mar; 13(1):149. PubMed ID: 32204732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virulence of geographically different Cryptosporidium parvum isolates in experimental animal model.
    Sayed FG; Hamza AI; Galal LA; Sayed DM; Gaber M
    Ann Parasitol; 2016 Oct; 62(3):221-32. PubMed ID: 27770762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host cell tropism underlies species restriction of human and bovine Cryptosporidium parvum genotypes.
    Hashim A; Clyne M; Mulcahy G; Akiyoshi D; Chalmers R; Bourke B
    Infect Immun; 2004 Oct; 72(10):6125-31. PubMed ID: 15385517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation kinetics of Cryptosporidium parvum oocysts in a swine waste lagoon and spray field.
    Jenkins MB; Liotta JL; Bowman DD
    J Parasitol; 2013 Apr; 99(2):337-42. PubMed ID: 23016982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotyping of Cryptosporidium parvum with microsatellite markers.
    Widmer G; Feng X; Tanriverdi S
    Methods Mol Biol; 2004; 268():177-87. PubMed ID: 15156029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative evaluation of infectivity change of Cryptosporidium parvum after gamma irradiation.
    Lee SU; Joung M; Nam T; Park WY; Yu JR
    Korean J Parasitol; 2009 Mar; 47(1):7-11. PubMed ID: 19290085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-yield amplification of Cryptosporidium parvum in interferon gamma receptor knockout mice.
    von Oettingen J; Nath-Chowdhury M; Ward BJ; Rodloff AC; Arrowood MJ; Ndao M
    Parasitology; 2008 Sep; 135(10):1151-6. PubMed ID: 18667105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative genome analysis of two Cryptosporidium parvum isolates with different host range.
    Widmer G; Lee Y; Hunt P; Martinelli A; Tolkoff M; Bodi K
    Infect Genet Evol; 2012 Aug; 12(6):1213-21. PubMed ID: 22522000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of resistance to γ-irradiation between Cryptosporidium parvum and Cryptosporidium muris using in vivo infection.
    Yoon S; Yu JR
    Korean J Parasitol; 2011 Dec; 49(4):423-6. PubMed ID: 22355212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic basis for virulence differences of various Cryptosporidium parvum carcinogenic isolates.
    Audebert C; Bonardi F; Caboche S; Guyot K; Touzet H; Merlin S; Gantois N; Creusy C; Meloni D; Mouray A; Viscogliosi E; Certad G; Benamrouz-Vanneste S; Chabé M
    Sci Rep; 2020 Apr; 10(1):7316. PubMed ID: 32355272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apical Secretory Glycoprotein Complex Contributes to Cell Attachment and Entry by Cryptosporidium parvum.
    Akey ME; Xu R; Ravindran S; Funkhouser-Jones L; Sibley LD
    mBio; 2023 Feb; 14(1):e0306422. PubMed ID: 36722968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The suppressive effect of Mekabu fucoidan on an attachment of Cryptosporidium parvum oocysts to the intestinal epithelial cells in neonatal mice.
    Maruyama H; Tanaka M; Hashimoto M; Inoue M; Sasahara T
    Life Sci; 2007 Jan; 80(8):775-81. PubMed ID: 17157323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.