These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38885312)

  • 21. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition.
    Liu Z; Jiang H; Lee SY; Kong N; Chan YW
    Cell Rep; 2024 Jul; 43(7):114464. PubMed ID: 38985669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness.
    Gralewska P; Gajek A; Marczak A; Mikuła M; Ostrowski J; Śliwińska A; Rogalska A
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability.
    Kawale AS; Ran X; Patel PS; Saxena S; Lawrence MS; Zou L
    Sci Adv; 2024 Jan; 10(3):eadk2771. PubMed ID: 38241374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PSPC1 Inhibition Synergizes with Poly(ADP-ribose) Polymerase Inhibitors in a Preclinical Model of BRCA-Mutated Breast/Ovarian Cancer.
    Ghosh M; Kang MS; Katuwal NB; Hong SD; Jeong YG; Park SM; Kim SG; Moon YW
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1-deficient non-small cell lung cancer.
    Paul I; Savage KI; Blayney JK; Lamers E; Gately K; Kerr K; Sheaff M; Arthur K; Richard DJ; Hamilton PW; James JA; O'Byrne KJ; Harkin DP; Quinn JE; Fennell DA
    J Pathol; 2011 Aug; 224(4):564-74. PubMed ID: 21706479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replication Gaps Underlie BRCA Deficiency and Therapy Response.
    Panzarino NJ; Krais JJ; Cong K; Peng M; Mosqueda M; Nayak SU; Bond SM; Calvo JA; Doshi MB; Bere M; Ou J; Deng B; Zhu LJ; Johnson N; Cantor SB
    Cancer Res; 2021 Mar; 81(5):1388-1397. PubMed ID: 33184108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of Ubiquitin Specific Protease 1 Sensitizes Colorectal Cancer Cells to DNA-Damaging Chemotherapeutics.
    Xu X; Li S; Cui X; Han K; Wang J; Hou X; Cui L; He S; Xiao J; Yang Y
    Front Oncol; 2019; 9():1406. PubMed ID: 31921663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through Its interactions with PCNA and USP1.
    Lee KY; Yang K; Cohn MA; Sikdar N; D'Andrea AD; Myung K
    J Biol Chem; 2010 Apr; 285(14):10362-9. PubMed ID: 20147293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks.
    Tsuji Y; Watanabe K; Araki K; Shinohara M; Yamagata Y; Tsurimoto T; Hanaoka F; Yamamura K; Yamaizumi M; Tateishi S
    Genes Cells; 2008 Apr; 13(4):343-54. PubMed ID: 18363965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MRNIP limits ssDNA gaps during replication stress.
    Bennett LG; Vernon EG; Thanendran V; Jones CM; Gamble A; Staples CJ
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38917325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specificity for deubiquitination of monoubiquitinated FANCD2 is driven by the N-terminus of USP1.
    Arkinson C; Chaugule VK; Toth R; Walden H
    Life Sci Alliance; 2018 Oct; 1(5):e201800162. PubMed ID: 30456385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of USP1 enhances anticancer drugs-induced cancer cell death through downregulation of survivin and miR-216a-5p-mediated upregulation of DR5.
    Woo SM; Kim S; Seo SU; Kim S; Park JW; Kim G; Choi YR; Hur K; Kwon TK
    Cell Death Dis; 2022 Sep; 13(9):821. PubMed ID: 36153316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (Single-stranded DNA) gaps in understanding BRCAness.
    Schreuder A; Wendel TJ; Dorresteijn CGV; Noordermeer SM
    Trends Genet; 2024 May; ():. PubMed ID: 38789375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination treatment using DDX3 and PARP inhibitors induces synthetic lethality in BRCA1-proficient breast cancer.
    Heerma van Voss MR; Brilliant JD; Vesuna F; Bol GM; van der Wall E; van Diest PJ; Raman V
    Med Oncol; 2017 Mar; 34(3):33. PubMed ID: 28138868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration of poly (ADP-ribose) polymerase inhibitor resistance in the treatment of BRCA1/2-mutated cancer.
    Wu S; Yao X; Sun W; Jiang K; Hao J
    Genes Chromosomes Cancer; 2024 May; 63(5):e23243. PubMed ID: 38747337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells.
    Mistry H; Hsieh G; Buhrlage SJ; Huang M; Park E; Cuny GD; Galinsky I; Stone RM; Gray NS; D'Andrea AD; Parmar K
    Mol Cancer Ther; 2013 Dec; 12(12):2651-62. PubMed ID: 24130053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells.
    Das DS; Das A; Ray A; Song Y; Samur MK; Munshi NC; Chauhan D; Anderson KC
    Clin Cancer Res; 2017 Aug; 23(15):4280-4289. PubMed ID: 28270494
    [No Abstract]   [Full Text] [Related]  

  • 38. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.
    Zatreanu D; Robinson HMR; Alkhatib O; Boursier M; Finch H; Geo L; Grande D; Grinkevich V; Heald RA; Langdon S; Majithiya J; McWhirter C; Martin NMB; Moore S; Neves J; Rajendra E; Ranzani M; Schaedler T; Stockley M; Wiggins K; Brough R; Sridhar S; Gulati A; Shao N; Badder LM; Novo D; Knight EG; Marlow R; Haider S; Callen E; Hewitt G; Schimmel J; Prevo R; Alli C; Ferdinand A; Bell C; Blencowe P; Bot C; Calder M; Charles M; Curry J; Ekwuru T; Ewings K; Krajewski W; MacDonald E; McCarron H; Pang L; Pedder C; Rigoreau L; Swarbrick M; Wheatley E; Willis S; Wong AC; Nussenzweig A; Tijsterman M; Tutt A; Boulton SJ; Higgins GS; Pettitt SJ; Smith GCM; Lord CJ
    Nat Commun; 2021 Jun; 12(1):3636. PubMed ID: 34140467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance.
    Serra V; Wang AT; Castroviejo-Bermejo M; Polanska UM; Palafox M; Herencia-Ropero A; Jones GN; Lai Z; Armenia J; Michopoulos F; Llop-Guevara A; Brough R; Gulati A; Pettitt SJ; Bulusu KC; Nikkilä J; Wilson Z; Hughes A; Wijnhoven PWG; Ahmed A; Bruna A; Gris-Oliver A; Guzman M; Rodríguez O; Grueso J; Arribas J; Cortés J; Saura C; Lau A; Critchlow S; Dougherty B; Caldas C; Mills GB; Barrett JC; Forment JV; Cadogan E; Lord CJ; Cruz C; Balmaña J; O'Connor MJ
    Clin Cancer Res; 2022 Oct; 28(20):4536-4550. PubMed ID: 35921524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ectopic RNF168 expression promotes break-induced replication-like DNA synthesis at stalled replication forks.
    Krais JJ; Johnson N
    Nucleic Acids Res; 2020 May; 48(8):4298-4308. PubMed ID: 32182354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.