These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38885449)

  • 1. Impart of Heterogeneous Charge Polarization and Distribution on Friction at Water-Graphene Interfaces: a Density-Functional-Theory based Machine Learning Study.
    Li H; Guo W; Guo Y
    J Phys Chem Lett; 2024 Jun; 15(25):6585-6591. PubMed ID: 38885449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Friction induced structural transformations of water monolayers at graphene/Cu interfaces.
    Cai H; Guo Y; Guo W
    Phys Chem Chem Phys; 2018 Feb; 20(6):4137-4143. PubMed ID: 29355252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of sliding-induced defects and dissociated water molecules on low friction of graphene.
    Yang Z; Bhowmick S; Sen FG; Banerji A; Alpas AT
    Sci Rep; 2018 Jan; 8(1):121. PubMed ID: 29317658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering a Universal Molecular Mechanism of Salt Ion Adsorption at Solid/Water Interfaces.
    Misra RP; Blankschtein D
    Langmuir; 2021 Jan; 37(2):722-733. PubMed ID: 33395299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of magnesium ions with pristine single-layer and defected graphene/water interfaces studied by second harmonic generation.
    Achtyl JL; Vlassiouk IV; Surwade SP; Fulvio PF; Dai S; Geiger FM
    J Phys Chem B; 2014 Jul; 118(28):7739-49. PubMed ID: 24517192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces.
    Seal A; Govind Rajan A
    Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron cooling in graphene enhanced by plasmon-hydron resonance.
    Yu X; Principi A; Tielrooij KJ; Bonn M; Kavokine N
    Nat Nanotechnol; 2023 Aug; 18(8):898-904. PubMed ID: 37349505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Charge Transfer Modulated Static Friction Resistance of Water Drops.
    Hu T; Wang X; Sheng H; Chen X; Tan J; Fang S; Deng W; Li X; Yin J; Guo W
    Langmuir; 2023 Jul; 39(26):9246-9252. PubMed ID: 37352469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Decoding and Tuning Electronic Friction of Si Nanotip Sliding on Graphene.
    Li Y; Wu B; Ouyang W; Liu Z; Wang W
    Nano Lett; 2024 Jan; 24(4):1130-1136. PubMed ID: 38252698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classical Quantum Friction at Water-Carbon Interfaces.
    Bui AT; Thiemann FL; Michaelides A; Cox SJ
    Nano Lett; 2023 Jan; 23(2):580-587. PubMed ID: 36626824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Curvature Enhances the Electrotunability of Ionic Liquid Lubrication.
    Zheng Q; Hawthorne N; Batteas JD; Espinosa-Marzal RM
    Langmuir; 2024 Feb; ():. PubMed ID: 38334102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Flexible Lubrication Performance of Graphene Used in Diamond Interface as a Solid Lubricant: First-Principles Calculations.
    Wang J; Li L; Yang W; Li M; Guo P; Zhao B; Yang L; Fang L; Sun B; Jia Y
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31888134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electric double layer at metal-water interfaces revisited based on a charge polarization scheme.
    Sakong S; Groß A
    J Chem Phys; 2018 Aug; 149(8):084705. PubMed ID: 30193475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-Scale Sliding Friction on Graphene in Water.
    Vilhena JG; Pimentel C; Pedraz P; Luo F; Serena PA; Pina CM; Gnecco E; Pérez R
    ACS Nano; 2016 Apr; 10(4):4288-93. PubMed ID: 26982997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles theory of atomic-scale friction explored by an intuitive charge density fluctuation surface.
    Zhang B; Cheng Z; Zhang G; Lu Z; Ma F; Zhou F
    Phys Chem Chem Phys; 2019 Nov; 21(44):24565-24571. PubMed ID: 31663565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale model for charge inversion in electric double layers.
    Mashayak SY; Aluru NR
    J Chem Phys; 2018 Jun; 148(21):214102. PubMed ID: 29884053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.