BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38885610)

  • 1. Disodium Cromoglycate Templates Anisotropic Short-Chain PEG Hydrogels.
    Chen J; Luo Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33223-33234. PubMed ID: 38885610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q
    J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toroidal nuclei of columnar lyotropic chromonic liquid crystals coexisting with an isotropic phase.
    Koizumi R; Golovaty D; Alqarni A; Walker SW; Nastishin YA; Calderer MC; Lavrentovich OD
    Soft Matter; 2022 Oct; 18(38):7258-7268. PubMed ID: 35975722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic, porous hydrogels templated by lyotropic chromonic liquid crystals.
    Wang S; Maruri DP; Boothby JM; Lu X; Rivera-Tarazona LK; Varner VD; Ware TH
    J Mater Chem B; 2020 Aug; 8(31):6988-6998. PubMed ID: 32626869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk Alignment of Chromonic Aggregates During Swelling of Hydrogels.
    Shiraishi K; Takahashi S; Le KV; Naka Y; Sasaki T
    Macromol Rapid Commun; 2020 May; 41(10):e1900631. PubMed ID: 32129910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering biologically extensible hydrogels using photolithographic printing.
    Mehta SM; Jin T; Stanciulescu I; Grande-Allen KJ
    Acta Biomater; 2018 Jul; 75():52-62. PubMed ID: 29803005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides.
    Zhu J; Tang C; Kottke-Marchant K; Marchant RE
    Bioconjug Chem; 2009 Feb; 20(2):333-9. PubMed ID: 19191566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M; Cabral JD; Saunderson S; Ali MA
    J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering.
    Qin X; He R; Chen H; Fu D; Peng Y; Meng S; Chen C; Yang L
    J Biomater Sci Polym Ed; 2021 Jun; 32(8):1057-1071. PubMed ID: 33685369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application.
    Della Sala F; Biondi M; Guarnieri D; Borzacchiello A; Ambrosio L; Mayol L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103885. PubMed ID: 32957192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation.
    Zhu J; He P; Lin L; Jones DR; Marchant RE
    Biomacromolecules; 2012 Mar; 13(3):706-13. PubMed ID: 22296572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures.
    Wang H; Cui J; Zheng Z; Shi Q; Sun T; Liu X; Huang Q; Fukuda T
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41669-41679. PubMed ID: 29130303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical organization in liquid crystal-in-liquid crystal emulsions.
    Mushenheim PC; Abbott NL
    Soft Matter; 2014 Nov; 10(43):8627-34. PubMed ID: 25278032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal 2: Lyotropic Chromonic Liquid Crystals.
    Gonçalves DPN; Ogolla T; Hegmann T
    Chemphyschem; 2023 Feb; 24(3):e202200685. PubMed ID: 36197761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels.
    Kim S; Choi Y; Lee W; Kim K
    Tissue Eng Regen Med; 2022 Apr; 19(2):309-319. PubMed ID: 34905183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.