These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38885611)
21. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Wu X; Stroll SI; Lantigua D; Suvarnapathaki S; Camci-Unal G Biomater Sci; 2019 Jun; 7(7):2675-2685. PubMed ID: 31062775 [TBL] [Abstract][Full Text] [Related]
22. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering. Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655 [TBL] [Abstract][Full Text] [Related]
23. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications. Gaihre B; Potes MDA; Liu X; Tilton M; Camilleri E; Rezaei A; Serdiuk V; Park S; Lucien F; Terzic A; Lu L J Biomed Mater Res A; 2024 May; 112(5):672-684. PubMed ID: 37971074 [TBL] [Abstract][Full Text] [Related]
24. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
25. Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities. Kim M; Yun HS; Kim GH Sci Rep; 2017 Jun; 7(1):3166. PubMed ID: 28600540 [TBL] [Abstract][Full Text] [Related]
26. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
27. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
28. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. Kirmanidou Y; Chatzinikolaidou M; Michalakis K; Tsouknidas A Biomater Adv; 2024 Sep; 162():213902. PubMed ID: 38823255 [TBL] [Abstract][Full Text] [Related]
29. Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits. Komatsu D; Cabrera ARE; Quevedo BV; Asami J; Cristina Motta A; de Moraes SC; Duarte MAT; Hausen MA; Aparecida de Rezende Duek E J Biomater Appl; 2024 Jul; 39(1):66-79. PubMed ID: 38646887 [TBL] [Abstract][Full Text] [Related]
30. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Nadi A; Khodaei M; Javdani M; Mirzaei SA; Soleimannejad M; Tayebi L; Asadpour S Int J Biol Macromol; 2022 Oct; 219():1319-1336. PubMed ID: 36055598 [TBL] [Abstract][Full Text] [Related]
32. Harnessing oriented arrangement of collagen fibers by 3D printing for enhancing mechanical and osteogenic properties of mineralized collagen scaffolds. Zhou Y; Lian XJ; Lu Y; Zhu Q; Fu T; Feng HN; Lei Q; Huang D Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38815596 [TBL] [Abstract][Full Text] [Related]
33. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications. Barbosa TV; Dernowsek JA; Tobar RJR; Casali BC; Fortulan CA; Ferreira EB; Selistre-de-Araújo HS; Branciforti MC Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35948004 [TBL] [Abstract][Full Text] [Related]
34. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891 [TBL] [Abstract][Full Text] [Related]
35. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival. Touri M; Moztarzadeh F; Osman NAA; Dehghan MM; Mozafari M Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():236-242. PubMed ID: 29519434 [TBL] [Abstract][Full Text] [Related]
36. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Dong L; Wang SJ; Zhao XR; Zhu YF; Yu JK Sci Rep; 2017 Oct; 7(1):13412. PubMed ID: 29042614 [TBL] [Abstract][Full Text] [Related]
37. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
38. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Belaid H; Nagarajan S; Teyssier C; Barou C; Barés J; Balme S; Garay H; Huon V; Cornu D; Cavaillès V; Bechelany M Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110595. PubMed ID: 32204059 [TBL] [Abstract][Full Text] [Related]
39. 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. Steffens D; Rezende RA; Santi B; Pereira FD; Inforçatti Neto P; da Silva JV; Pranke P J Appl Biomater Funct Mater; 2016 Apr; 14(1):e19-25. PubMed ID: 26660628 [TBL] [Abstract][Full Text] [Related]