These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 38886207)
1. Sampling Strategies for Experimentally Mapping Molecular Fitness Landscapes Using High-Throughput Methods. Chen SK; Liu J; Van Nynatten A; Tudor-Price BM; Chang BSW J Mol Evol; 2024 Aug; 92(4):402-414. PubMed ID: 38886207 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary accessibility of mutational pathways. Franke J; Klözer A; de Visser JA; Krug J PLoS Comput Biol; 2011 Aug; 7(8):e1002134. PubMed ID: 21876664 [TBL] [Abstract][Full Text] [Related]
3. Molecular Fitness Landscapes from High-Coverage Sequence Profiling. Blanco C; Janzen E; Pressman A; Saha R; Chen IA Annu Rev Biophys; 2019 May; 48():1-18. PubMed ID: 30601678 [TBL] [Abstract][Full Text] [Related]
4. Unsupervised Inference of Protein Fitness Landscape from Deep Mutational Scan. Fernandez-de-Cossio-Diaz J; Uguzzoni G; Pagnani A Mol Biol Evol; 2021 Jan; 38(1):318-328. PubMed ID: 32770229 [TBL] [Abstract][Full Text] [Related]
5. On the deformability of an empirical fitness landscape by microbial evolution. Bajić D; Vila JCC; Blount ZD; Sánchez A Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11286-11291. PubMed ID: 30322921 [TBL] [Abstract][Full Text] [Related]
6. Recombination and mutational robustness in neutral fitness landscapes. Klug A; Park SC; Krug J PLoS Comput Biol; 2019 Aug; 15(8):e1006884. PubMed ID: 31415555 [TBL] [Abstract][Full Text] [Related]
7. A systematic survey of an intragenic epistatic landscape. Bank C; Hietpas RT; Jensen JD; Bolon DN Mol Biol Evol; 2015 Jan; 32(1):229-38. PubMed ID: 25371431 [TBL] [Abstract][Full Text] [Related]
8. AMaLa: Analysis of Directed Evolution Experiments via Annealed Mutational Approximated Landscape. Sesta L; Uguzzoni G; Fernandez-de-Cossio-Diaz J; Pagnani A Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681569 [TBL] [Abstract][Full Text] [Related]
9. Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning. Rotrattanadumrong R; Yokobayashi Y Nat Commun; 2022 Aug; 13(1):4847. PubMed ID: 35977956 [TBL] [Abstract][Full Text] [Related]
10. Beyond the Hypercube: Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks. Zagorski M; Burda Z; Waclaw B PLoS Comput Biol; 2016 Dec; 12(12):e1005218. PubMed ID: 27935934 [TBL] [Abstract][Full Text] [Related]
11. On the incongruence of genotype-phenotype and fitness landscapes. Srivastava M; Payne JL PLoS Comput Biol; 2022 Sep; 18(9):e1010524. PubMed ID: 36121840 [TBL] [Abstract][Full Text] [Related]
12. Geometry of fitness landscapes: peaks, shapes and universal positive epistasis. Crona K; Krug J; Srivastava M J Math Biol; 2023 Mar; 86(4):62. PubMed ID: 36976406 [TBL] [Abstract][Full Text] [Related]
19. Mapping the Peaks: Fitness Landscapes of the Fittest and the Flattest. Franklin J; LaBar T; Adami C Artif Life; 2019; 25(3):250-262. PubMed ID: 31397601 [TBL] [Abstract][Full Text] [Related]
20. Environmental modulation of global epistasis in a drug resistance fitness landscape. Diaz-Colunga J; Sanchez A; Ogbunugafor CB Nat Commun; 2023 Dec; 14(1):8055. PubMed ID: 38052815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]