These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3888626)

  • 1. Do yeast aminoacyl-tRNA synthetases exist as soluble enzymes within the cytoplasm?
    Cirakoglu B; Waller JP
    Eur J Biochem; 1985 Jun; 149(2):353-61. PubMed ID: 3888626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucyl-tRNA and lysyl-tRNA synthetases, derived from the high-Mr complex of sheep liver, are hydrophobic proteins.
    Cirakoglu B; Waller JP
    Eur J Biochem; 1985 Aug; 151(1):101-10. PubMed ID: 3896782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of the yeast mitochondrial methionyl-tRNA synthetase. Common and distinctive features of the cytoplasmic and mitochondrial isoenzymes.
    Schwob E; Sanni A; Fasiolo F; Martin RP
    Eur J Biochem; 1988 Dec; 178(1):235-42. PubMed ID: 3060359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polyanion-binding domain of cytoplasmic Lys-tRNA synthetase from Saccharomyces cerevisiae is not essential for cell viability.
    Martinez R; Mirande M
    Eur J Biochem; 1992 Jul; 207(1):1-11. PubMed ID: 1628641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threonyl-tRNA, lysyl-tRNA and arginyl-tRNA synthetases from Baker's yeast. Substrate specificity with regard to ATP analogues.
    Freist W; Sternbach H; von der Haar F; Cramer F
    Eur J Biochem; 1978 Mar; 84(2):499-502. PubMed ID: 346350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli.
    Neidhardt FC; Bloch PL; Pedersen S; Reeh S
    J Bacteriol; 1977 Jan; 129(1):378-87. PubMed ID: 318645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and evolution of a group of related aminoacyl-tRNA synthetases.
    Gatti DL; Tzagoloff A
    J Mol Biol; 1991 Apr; 218(3):557-68. PubMed ID: 2016746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentation behaviour of aminoacyl-tRNA synthetases from mixed lysates of yeast and rabbit liver.
    Mirande M; Pailliez JP; Schwencke J; Waller JP
    Biochim Biophys Acta; 1983 Sep; 747(1-2):71-7. PubMed ID: 6349695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear origin of specific yeast mitochondrial aminoacyl-tRNA synthetases.
    Schneller JM; Schneller C; Martin R; Stahl AJ
    Nucleic Acids Res; 1976 May; 3(5):1151-65. PubMed ID: 781620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain.
    Lorber B; Mejdoub H; Reinbolt J; Boulanger Y; Giegé R
    Eur J Biochem; 1988 May; 174(1):155-61. PubMed ID: 3286258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.
    Cusack S; Härtlein M; Leberman R
    Nucleic Acids Res; 1991 Jul; 19(13):3489-98. PubMed ID: 1852601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver.
    Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC
    Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
    Airas RK
    Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM; Chinualt AC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of lysyl-tRNA synthetase after dissociation of the particulate aminoacyl-tRNA synthetases from rat liver.
    Johnson DL; Van Dang C; Yang DC
    J Biol Chem; 1980 May; 255(9):4362-6. PubMed ID: 7372681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology of aspartyl- and lysyl-tRNA synthetases.
    Gampel A; Tzagoloff A
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6023-7. PubMed ID: 2668951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases.
    Plateau P; Mayaux JF; Blanquet S
    Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen.
    Ripmaster TL; Shiba K; Schimmel P
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4932-6. PubMed ID: 7761427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey on substrate specificity with regard to ATP analogs of aminoacyl-tRNA synthetases from E. coli and from Baker's yeast. Correlation to synthetase families.
    Freist W; Sternbach H; Cramer F
    Hoppe Seylers Z Physiol Chem; 1981 Sep; 362(9):1247-54. PubMed ID: 7049888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.