BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3888627)

  • 1. Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae.
    Ramos F; el Guezzar M; Grenson M; Wiame JM
    Eur J Biochem; 1985 Jun; 149(2):401-4. PubMed ID: 3888627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae.
    Talibi D; Grenson M; André B
    Nucleic Acids Res; 1995 Feb; 23(4):550-7. PubMed ID: 7899074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production.
    Cao J; Barbosa JM; Singh NK; Locy RD
    Yeast; 2013 Apr; 30(4):129-44. PubMed ID: 23447388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain.
    Whittle SR; Turner AJ
    J Neurochem; 1978 Dec; 31(6):1453-9. PubMed ID: 121742
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate.
    Metzer E; Levitz R; Halpern YS
    J Bacteriol; 1979 Mar; 137(3):1111-8. PubMed ID: 374339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis.
    Belitsky BR; Sonenshein AL
    Mol Microbiol; 2002 Jul; 45(2):569-83. PubMed ID: 12123465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into {gamma}-aminobutyric acid catabolism: Evidence for {gamma}-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae.
    Bach B; Meudec E; Lepoutre JP; Rossignol T; Blondin B; Dequin S; Camarasa C
    Appl Environ Microbiol; 2009 Jul; 75(13):4231-9. PubMed ID: 19411412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of three enzymes of gamma-aminobutyric acid metabolism in monkey retina.
    Pusateri ME; Carter JG; Berger SJ; Lowry OH
    J Neurochem; 1984 May; 42(5):1269-72. PubMed ID: 6707630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA in plants: just a metabolite?
    Bouché N; Fromm H
    Trends Plant Sci; 2004 Mar; 9(3):110-5. PubMed ID: 15003233
    [No Abstract]   [Full Text] [Related]  

  • 11. Separation and characterization of NAD- and NADP-specific succinate-semialdehyde dehydrogenase from Escherichia coli K-12 3300.
    Cozzani I; Fazio AM; Felici E; Barletta G
    Biochim Biophys Acta; 1980 Jun; 613(2):309-17. PubMed ID: 7004491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of polyamines on the enzymes of the 4-aminobutyric acid metabolism in mouse brain in vitro.
    Lapinjoki SP; Pajunen AE; Hietala OA; Piha RS
    FEBS Lett; 1980 Apr; 112(2):289-92. PubMed ID: 7371867
    [No Abstract]   [Full Text] [Related]  

  • 13. Histochemical study of GABA catabolism in rat hypothalamus.
    Martinez-Rodriguez R; Arenas Diaz G
    Cell Mol Biol; 1986; 32(3):351-8. PubMed ID: 3742547
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD).
    Bartsch K; von Johnn-Marteville A; Schulz A
    J Bacteriol; 1990 Dec; 172(12):7035-42. PubMed ID: 2254272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae.
    Cardillo SB; Correa García S; Bermúdez Moretti M
    Biochem Biophys Res Commun; 2011 Jul; 410(4):885-9. PubMed ID: 21708130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase.
    Skinner MA; Cooper RA
    Arch Microbiol; 1982 Sep; 132(3):270-5. PubMed ID: 6756331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localization of the GABA-shunt enzymes in Euglena gracilis strain Z.
    Tokunaga M; Nakano Y; Kitaoka S
    J Protozool; 1979 Aug; 26(3):471-3. PubMed ID: 119850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae.
    Kamei Y; Tamura T; Yoshida R; Ohta S; Fukusaki E; Mukai Y
    Biochem Biophys Res Commun; 2011 Apr; 407(1):185-90. PubMed ID: 21371425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isosterism and molecular modification in drug design: tetrazole analogue of GABA: effects on enzymes of the gamma-aminobutyrate system.
    Kraus JL
    Pharmacol Res Commun; 1983 Feb; 15(2):183-9. PubMed ID: 6405400
    [No Abstract]   [Full Text] [Related]  

  • 20. Evidence that gamma-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato.
    Solomon PS; Oliver RP
    Planta; 2002 Jan; 214(3):414-20. PubMed ID: 11855646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.