These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38886412)

  • 1. Specialized diving traits in the generalist morphology of Fulica (Aves, Rallidae).
    De Mendoza RS; Carril J; Degrange FJ; Tambussi CP
    Sci Rep; 2024 Jun; 14(1):13966. PubMed ID: 38886412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds.
    Smith NA; Koeller KL; Clarke JA; Ksepka DT; Mitchell JS; Nabavizadeh A; Ridgley RC; Witmer LM
    Anat Rec (Hoboken); 2022 Jul; 305(7):1563-1591. PubMed ID: 34813153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative hindlimb myology of foot-propelled swimming birds.
    Clifton GT; Carr JA; Biewener AA
    J Anat; 2018 Jan; 232(1):105-123. PubMed ID: 29098684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotory abilities and habitat of the Cretaceous bird Gansus yumenensis inferred from limb length proportions.
    Nudds RL; Atterholt J; Wang X; You HL; Dyke GJ
    J Evol Biol; 2013 Jan; 26(1):150-4. PubMed ID: 23194019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedestrian locomotion energetics and gait characteristics of a diving bird, the great cormorant, Phalacrocorax carbo.
    White CR; Martin GR; Butler PJ
    J Comp Physiol B; 2008 Aug; 178(6):745-54. PubMed ID: 18575869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lift-based paddling in diving grebe.
    Johansson LC; Lindhe Norberg UM
    J Exp Biol; 2001 May; 204(Pt 10):1687-96. PubMed ID: 11316488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foot-propelled swimming kinematics and turning strategies in common loons.
    Clifton GT; Biewener AA
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30127080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic drag of diving birds: effects of body size, body shape and feathers at steady speeds.
    Lovvorn J; Liggins GA; Borstad MH; Calisal SM; Mikkelsen J
    J Exp Biol; 2001 May; 204(Pt 9):1547-57. PubMed ID: 11398745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness.
    Smith NA; Clarke JA
    Anat Rec (Hoboken); 2014 Feb; 297(2):188-99. PubMed ID: 24357466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae.
    Hinić-Frlog S; Motani R
    J Evol Biol; 2010 Feb; 23(2):372-85. PubMed ID: 20021550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic analysis of pelecaniformes (aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies.
    Smith ND
    PLoS One; 2010 Oct; 5(10):e13354. PubMed ID: 20976229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis).
    Enstipp MR; Grémillet D; Lorentsen SH
    J Exp Biol; 2005 Sep; 208(Pt 18):3451-61. PubMed ID: 16155218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters.
    Mayr G; Clarke J
    Cladistics; 2003 Dec; 19(6):527-553. PubMed ID: 34905857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of depth, temperature and food ingestion on the foraging energetics of a diving endotherm, the double-crested cormorant (Phalacrocorax auritus).
    Enstipp MR; Grémillet D; Jones DR
    J Exp Biol; 2006 Mar; 209(Pt 5):845-59. PubMed ID: 16481574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving.
    Smith NA; Clarke JA
    PLoS One; 2012; 7(11):e49584. PubMed ID: 23209585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins.
    Elliott KH; Ricklefs RE; Gaston AJ; Hatch SA; Speakman JR; Davoren GK
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9380-4. PubMed ID: 23690614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion.
    Livezey BC; Zusi RL
    Zool J Linn Soc; 2007 Jan; 149(1):1-95. PubMed ID: 18784798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated evolution of drag reduction at the air-water interface in diving kingfishers.
    Crandell KE; Howe RO; Falkingham PL
    J R Soc Interface; 2019 May; 16(154):20190125. PubMed ID: 31088257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersexual differences in the diving behaviour of foraging subantarctic cormorant (Phalacrocorax albiventer) and Japanese cormorant (P. filamentosus).
    Kato A; Watanuki Y; Shaughnessy P; Le Maho Y; Naito Y
    C R Acad Sci III; 1999 Jul; 322(7):557-62. PubMed ID: 10488429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy.
    Lapsansky AB; Warrick DR; Tobalske BW
    Integr Comp Biol; 2022 Oct; 62(4):878-889. PubMed ID: 35810134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.