These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38886615)

  • 1. Encoding signal propagation on topology-programmed DNA origami.
    Ji W; Xiong X; Cao M; Zhu Y; Li L; Wang F; Fan C; Pei H
    Nat Chem; 2024 Jun; ():. PubMed ID: 38886615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programming the Curvatures in Reconfigurable DNA Domino Origami by Using Asymmetric Units.
    Wang D; Yu L; Ji B; Chang S; Song J; Ke Y
    Nano Lett; 2020 Nov; 20(11):8236-8241. PubMed ID: 33095024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding and cutting DNA into reconfigurable topological nanostructures.
    Han D; Pal S; Liu Y; Yan H
    Nat Nanotechnol; 2010 Oct; 5(10):712-7. PubMed ID: 20890274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.
    Shen B; Linko V; Dietz H; Toppari JJ
    Electrophoresis; 2015 Jan; 36(2):255-62. PubMed ID: 25225147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatially localized architecture for fast and modular DNA computing.
    Chatterjee G; Dalchau N; Muscat RA; Phillips A; Seelig G
    Nat Nanotechnol; 2017 Sep; 12(9):920-927. PubMed ID: 28737747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable Transformations of DNA Origami Made of Small Modular Dynamic Units.
    Wang D; Yu L; Huang CM; Arya G; Chang S; Ke Y
    J Am Chem Soc; 2021 Feb; 143(5):2256-2263. PubMed ID: 33529009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking.
    Suzuki Y; Sugiyama H; Endo M
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7061-7065. PubMed ID: 29644771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA origami protection and molecular interfacing through engineered sequence-defined peptoids.
    Wang ST; Gray MA; Xuan S; Lin Y; Byrnes J; Nguyen AI; Todorova N; Stevens MM; Bertozzi CR; Zuckermann RN; Gang O
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6339-6348. PubMed ID: 32165539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-induced topological transformations of cellular microstructures.
    Li S; Deng B; Grinthal A; Schneider-Yamamura A; Kang J; Martens RS; Zhang CT; Li J; Yu S; Bertoldi K; Aizenberg J
    Nature; 2021 Apr; 592(7854):386-391. PubMed ID: 33854248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virus-encapsulated DNA origami nanostructures for cellular delivery.
    Mikkilä J; Eskelinen AP; Niemelä EH; Linko V; Frilander MJ; Törmä P; Kostiainen MA
    Nano Lett; 2014; 14(4):2196-200. PubMed ID: 24627955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning curved DNA origami structures through mechanical design and chemical adducts.
    Xie C; Hu Y; Chen Z; Chen K; Pan L
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35772292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Origami Post-Processing by CRISPR-Cas12a.
    Xiong Q; Xie C; Zhang Z; Liu L; Powell JT; Shen Q; Lin C
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):3956-3960. PubMed ID: 31883145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of DNA origami nanoarrays in cell lysate.
    Mei Q; Wei X; Su F; Liu Y; Youngbull C; Johnson R; Lindsay S; Yan H; Meldrum D
    Nano Lett; 2011 Apr; 11(4):1477-82. PubMed ID: 21366226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures.
    Ouyang Y; Zhang P; Willner I
    Bioconjug Chem; 2023 Jan; 34(1):51-69. PubMed ID: 35973134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling Up DNA Origami Lattice Assembly.
    Xin Y; Shen B; Kostiainen MA; Grundmeier G; Castro M; Linko V; Keller A
    Chemistry; 2021 Jun; 27(33):8564-8571. PubMed ID: 33780583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.
    Chen H; Zhang H; Pan J; Cha TG; Li S; Andréasson J; Choi JH
    ACS Nano; 2016 May; 10(5):4989-96. PubMed ID: 27057775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Supra-Folding of User-Programmed Functional DNA Nanostructures on Fuzzy Cationic Substrates.
    Nakazawa K; El Fakih F; Jallet V; Rossi-Gendron C; Mariconti M; Chocron L; Hishida M; Saito K; Morel M; Rudiuk S; Baigl D
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15214-15219. PubMed ID: 33675576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Origami Nanomachines.
    Endo M; Sugiyama H
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30022011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.