BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38886635)

  • 1. Transcriptome analyses of Acer Truncatum Bunge seeds to delineate the genes involved in fatty acid metabolism.
    Yan L; Fang H; Liang Y; Wang Y; Ren F; Xie X; Wu D
    BMC Genomics; 2024 Jun; 25(1):605. PubMed ID: 38886635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation.
    Wang R; Liu P; Fan J; Li L
    Sci Rep; 2018 Oct; 8(1):15504. PubMed ID: 30341360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Acer truncatum genome provides insights into nervonic acid biosynthesis.
    Ma Q; Sun T; Li S; Wen J; Zhu L; Yin T; Yan K; Xu X; Li S; Mao J; Wang YN; Jin S; Zhao X; Li Q
    Plant J; 2020 Nov; 104(3):662-678. PubMed ID: 32772482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analysis of metabolome, transcriptome, and bioclimatic factors of Acer truncatum seeds reveals key candidate genes related to unsaturated fatty acid biosynthesis, and potentially optimal production area.
    Li Y; Kong F; Wu S; Song W; Shao Y; Kang M; Chen T; Peng L; Shu Q
    BMC Plant Biol; 2024 Apr; 24(1):284. PubMed ID: 38627650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid.
    Ma Q; Wang Y; Li S; Wen J; Zhu L; Yan K; Du Y; Ren J; Li S; Chen Z; Bi C; Li Q
    BMC Plant Biol; 2022 Jan; 22(1):29. PubMed ID: 35026989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome footprint profiling enables elucidating the systemic regulation of fatty acid accumulation in Acer truncatum.
    Ma Q; Wang Y; Li S; Wen J; Zhu L; Yan K; Du Y; Li S; Yan L; Xie Z; Lyu Y; Shen F; Li Q
    BMC Biol; 2023 Apr; 21(1):68. PubMed ID: 37013569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic transcriptome analysis identifies genes related to fatty acid biosynthesis in the seeds of Prunus pedunculata Pall.
    Bao W; Ao D; Wang L; Ling Z; Chen M; Bai Y; Wuyun TN; Chen J; Zhang S; Li F
    BMC Plant Biol; 2021 Mar; 21(1):152. PubMed ID: 33761884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Sequencing and Screening of Anthocyanin-Related Genes in the Leaves of Acer truncatum Bunge.
    Si F; Wang X; Du X; Wang J; Tao J; Qiao Q; Feng Z
    Biochem Genet; 2022 Dec; 60(6):1845-1864. PubMed ID: 35118585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting
    Song W; Zhang K; Xue T; Han J; Peng F; Ding C; Lin F; Li J; Sze FTA; Gan J; Chen X
    Food Funct; 2022 Mar; 13(5):2475-2490. PubMed ID: 35147628
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of the Complete Chloroplast Genome of
    Ma Q; Wang Y; Zhu L; Bi C; Li S; Li S; Wen J; Yan K; Li Q
    Biomed Res Int; 2019; 2019():7417239. PubMed ID: 31886246
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism.
    Xie D; Dai Z; Yang Z; Tang Q; Deng C; Xu Y; Wang J; Chen J; Zhao D; Zhang S; Zhang S; Su J
    Plant Sci; 2019 Sep; 286():98-107. PubMed ID: 31300147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions.
    Le X; Zhang W; Sun G; Fan J; Zhu M
    Foods; 2023 Jun; 12(13):. PubMed ID: 37444182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds.
    Yang T; Yu Q; Xu W; Li DZ; Chen F; Liu A
    BMC Plant Biol; 2018 Oct; 18(1):247. PubMed ID: 30340521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of genes associated with the biosynthesis of unsaturated fatty acid and oil accumulation in herbaceous peony 'Hangshao' (Paeonia lactiflora 'Hangshao') seeds based on transcriptome analysis.
    Meng JS; Tang YH; Sun J; Zhao DQ; Zhang KL; Tao J
    BMC Genomics; 2021 Feb; 22(1):94. PubMed ID: 33522906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization technology and kinetic studies of Acer truncatum seed oil saponification and crystallization separation of nervonic acid.
    Li Y; Kong F; Zan M; Peng L; Wang Z; Shu Q
    J Food Sci; 2022 Sep; 87(9):3925-3937. PubMed ID: 35904249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome sequencing and flavonoid metabolism analysis in the leaves of three different cultivars of Acer truncatum.
    Qiao Q; Si F; Wu C; Wang J; Zhang A; Tao J; Zhang L; Liu Y; Feng Z
    Plant Physiol Biochem; 2022 Jan; 171():1-13. PubMed ID: 34968987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of conjugated linoleic acid by
    Chen DJ; Yan LH; Li Q; Zhang CJ; Si CL; Li ZY; Song YJ; Zhou H; Zhang TC; Luo XG
    Food Sci Biotechnol; 2017; 26(6):1595-1611. PubMed ID: 30263697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.