These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38886635)

  • 21. Diversity in seed oil content and fatty acid composition in
    He X; Li DZ; Tian B
    Plant Divers; 2021 Feb; 43(1):86-92. PubMed ID: 33778229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatty acid composition of developing tree peony (Paeonia section Moutan DC.) seeds and transcriptome analysis during seed development.
    Li SS; Wang LS; Shu QY; Wu J; Chen LG; Shao S; Yin DD
    BMC Genomics; 2015 Mar; 16(1):208. PubMed ID: 25887415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.
    Guo Y; Mietkiewska E; Francis T; Katavic V; Brost JM; Giblin M; Barton DL; Taylor DC
    Plant Mol Biol; 2009 Mar; 69(5):565-75. PubMed ID: 19082744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory Effect of
    Liang Y; Kong F; Ma X; Shu Q
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209113
    [No Abstract]   [Full Text] [Related]  

  • 25. Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii).
    Zhang L; Wu P; Lu W; Lü S
    BMC Plant Biol; 2018 Oct; 18(1):248. PubMed ID: 30340540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acer truncatum Bunge: A comprehensive review on ethnobotany, phytochemistry and pharmacology.
    Fan Y; Lin F; Zhang R; Wang M; Gu R; Long C
    J Ethnopharmacol; 2022 Jan; 282():114572. PubMed ID: 34487848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis.
    Song Q; Cheng S; Chen Z; Nie G; Xu F; Zhang J; Zhou M; Zhang W; Liao Y; Ye J
    BMC Plant Biol; 2019 May; 19(1):199. PubMed ID: 31092208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.
    Yin DD; Li SS; Shu QY; Gu ZY; Wu Q; Feng CY; Xu WZ; Wang LS
    Gene; 2018 Aug; 666():72-82. PubMed ID: 29738839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes.
    Yang P; Li X; Shipp MJ; Shockey JM; Cahoon EB
    BMC Plant Biol; 2010 Nov; 10():250. PubMed ID: 21080948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis.
    Kim HU; Chen GQ
    BMC Genomics; 2015 Mar; 16(1):230. PubMed ID: 25881190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds.
    Zhang Q; Yu R; Sun D; Rahman MM; Xie L; Hu J; He L; Kilaru A; Niu L; Zhang Y
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome Analysis and Identification of Lipid Genes in
    Chen GQ; Kim WN; Johnson K; Park ME; Lee KR; Kim HU
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic Analysis Reveals Key Genes Involved in Oil and Linoleic Acid Biosynthesis during
    Nan S; Zhang L; Hu X; Miao X; Han X; Fu H
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445076
    [No Abstract]   [Full Text] [Related]  

  • 37. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed.
    Fatima T; Snyder CL; Schroeder WR; Cram D; Datla R; Wishart D; Weselake RJ; Krishna P
    PLoS One; 2012; 7(4):e34099. PubMed ID: 22558083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds.
    Yu SY; Zhang X; Huang LB; Lyu YP; Zhang Y; Yao ZJ; Zhang XX; Yuan JH; Hu YH
    BMC Genomics; 2021 Apr; 22(1):297. PubMed ID: 33892636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.
    Yuan F; Yu X; Dong D; Yang Q; Fu X; Zhu S; Zhu D
    BMC Plant Biol; 2017 Jan; 17(1):16. PubMed ID: 28100173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.