These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 38887165)
1. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. Zhang S; Wang Q; Tan DEL; Sikka V; Ng CH; Xian Y; Li D; Muthiah M; Chew NWS; Storm G; Tong L; Wang JW J Extracell Vesicles; 2024 Jun; 13(6):e12466. PubMed ID: 38887165 [TBL] [Abstract][Full Text] [Related]
2. Faeces-derived extracellular vesicles participate in the onset of barrier dysfunction leading to liver diseases. Fizanne L; Villard A; Benabbou N; Recoquillon S; Soleti R; Delage E; Wertheimer M; Vidal-Gómez X; Oullier T; Chaffron S; Martínez MC; Neunlist M; Boursier J; Andriantsitohaina R J Extracell Vesicles; 2023 Feb; 12(2):e12303. PubMed ID: 36708245 [TBL] [Abstract][Full Text] [Related]
3. Milk-derived extracellular vesicles protect intestinal barrier integrity in the gut-liver axis. Tong L; Zhang S; Liu Q; Huang C; Hao H; Tan MS; Yu X; Lou CKL; Huang R; Zhang Z; Liu T; Gong P; Ng CH; Muthiah M; Pastorin G; Wacker MG; Chen X; Storm G; Lee CN; Zhang L; Yi H; Wang JW Sci Adv; 2023 Apr; 9(15):eade5041. PubMed ID: 37043568 [TBL] [Abstract][Full Text] [Related]
4. Flood Control: How Milk-Derived Extracellular Vesicles Can Help to Improve the Intestinal Barrier Function and Break the Gut-Joint Axis in Rheumatoid Arthritis. Aarts J; Boleij A; Pieters BCH; Feitsma AL; van Neerven RJJ; Ten Klooster JP; M'Rabet L; Arntz OJ; Koenders MI; van de Loo FAJ Front Immunol; 2021; 12():703277. PubMed ID: 34394100 [TBL] [Abstract][Full Text] [Related]
5. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis? Villard A; Boursier J; Andriantsitohaina R Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G485-G495. PubMed ID: 33471632 [TBL] [Abstract][Full Text] [Related]
6. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Milosevic I; Vujovic A; Barac A; Djelic M; Korac M; Radovanovic Spurnic A; Gmizic I; Stevanovic O; Djordjevic V; Lekic N; Russo E; Amedei A Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30658519 [TBL] [Abstract][Full Text] [Related]
7. The Profound Influence of Gut Microbiome and Extracellular Vesicles on Animal Health and Disease. Barathan M; Ng SL; Lokanathan Y; Ng MH; Law JX Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612834 [TBL] [Abstract][Full Text] [Related]
8. Effects of bacterial extracellular vesicles derived from oral and gastrointestinal pathogens on systemic diseases. Zhang H; Lin Y; Li S; Bi J; Zeng J; Mo C; Xu S; Jia B; Lu Y; Liu C; Liu Z Microbiol Res; 2024 Aug; 285():127788. PubMed ID: 38833831 [TBL] [Abstract][Full Text] [Related]
9. Extracellular vesicles-mediated interaction within intestinal microenvironment in inflammatory bowel disease. Shen Q; Huang Z; Yao J; Jin Y J Adv Res; 2022 Mar; 37():221-233. PubMed ID: 35499059 [TBL] [Abstract][Full Text] [Related]
11. Extracellular Vesicles: A Crucial Player in the Intestinal Microenvironment and Beyond. Wang S; Luo J; Wang H; Chen T; Sun J; Xi Q; Zhang Y Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542448 [TBL] [Abstract][Full Text] [Related]
12. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. Díez-Sainz E; Milagro FI; Riezu-Boj JI; Lorente-Cebrián S J Physiol Biochem; 2022 May; 78(2):485-499. PubMed ID: 34472032 [TBL] [Abstract][Full Text] [Related]
13. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. Liu X; Cao S; Zhang X J Agric Food Chem; 2015 Sep; 63(36):7885-95. PubMed ID: 26306709 [TBL] [Abstract][Full Text] [Related]
14. Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Niu G; Jian T; Gai Y; Chen J Adv Drug Deliv Rev; 2023 May; 196():114774. PubMed ID: 36906231 [TBL] [Abstract][Full Text] [Related]
15. Gut Microbiota as an Emerging Therapeutic Avenue for the Treatment of Nonalcoholic Fatty Liver Disease. Ralli T; Neupane YR; Saifi Z; Kohli K Curr Pharm Des; 2021; 27(46):4677-4685. PubMed ID: 34176456 [TBL] [Abstract][Full Text] [Related]
16. Influence of functional food components on gut health. Wan MLY; Ling KH; El-Nezami H; Wang MF Crit Rev Food Sci Nutr; 2019; 59(12):1927-1936. PubMed ID: 29381385 [TBL] [Abstract][Full Text] [Related]
17. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. Paolella G; Mandato C; Pierri L; Poeta M; Di Stasi M; Vajro P World J Gastroenterol; 2014 Nov; 20(42):15518-31. PubMed ID: 25400436 [TBL] [Abstract][Full Text] [Related]
18. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Safari Z; Gérard P Cell Mol Life Sci; 2019 Apr; 76(8):1541-1558. PubMed ID: 30683985 [TBL] [Abstract][Full Text] [Related]
19. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Suk KT; Kim DJ Expert Rev Gastroenterol Hepatol; 2019 Mar; 13(3):193-204. PubMed ID: 30791767 [TBL] [Abstract][Full Text] [Related]
20. Gut Microbiota as a Therapeutic Target for Metabolic Disorders. Okubo H; Nakatsu Y; Kushiyama A; Yamamotoya T; Matsunaga Y; Inoue MK; Fujishiro M; Sakoda H; Ohno H; Yoneda M; Ono H; Asano T Curr Med Chem; 2018; 25(9):984-1001. PubMed ID: 28990516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]