These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38887459)

  • 1. 2-Heptanol inhibits
    Wu F; Wang H; Lin Y; Qu Z; Zheng B; Feng S; Li X
    Front Plant Sci; 2024; 15():1400164. PubMed ID: 38887459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of linalool on
    Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit.
    Ji JY; Yang J; Zhang BW; Wang SR; Zhang GC; Lin LN
    Pestic Biochem Physiol; 2020 Jun; 166():104581. PubMed ID: 32448427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocontrol potential of
    Ajijah N; Fiodor A; Dziurzynski M; Stasiuk R; Pawlowska J; Dziewit L; Pranaw K
    Front Plant Sci; 2023; 14():1288408. PubMed ID: 38143572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Control of Tomato Gray Mold Caused by
    Sarven MS; Hao Q; Deng J; Yang F; Wang G; Xiao Y; Xiao X
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32183055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A.
    Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY
    Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
    Li S; Xiao Q; Yang H; Huang J; Li Y
    Pestic Biochem Physiol; 2022 Oct; 187():105199. PubMed ID: 36127070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Mechanism of Action of
    Alijani Z; Amini J; Karimi K; Pertot I
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea.
    Yue Y; Wang Z; Zhong T; Guo M; Huang L; Yang L; Kan J; Zalán Z; Hegyi F; Takács K; Du M
    Microbiol Res; 2023 Feb; 267():127253. PubMed ID: 36455309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea.
    Feng B; Li P; Chen D; Ding C
    Folia Microbiol (Praha); 2024 Apr; 69(2):361-371. PubMed ID: 37436591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against
    Li S; Yu Y; Xie P; Zhu X; Yang C; Wang L; Zhang S
    Microorganisms; 2024 Feb; 12(2):. PubMed ID: 38399764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Biocontrol Function of a Burkholderia gladioli Strain against Botrytis cinerea.
    Wang D; Luo WZ; Zhang DD; Li R; Kong ZQ; Song J; Dai XF; Alkan N; Chen JY
    Microbiol Spectr; 2023 Mar; 11(2):e0480522. PubMed ID: 36861984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocontrol Effect and Possible Mechanism of Food-Borne Sulfide 3-Methylthio-1-Propanol Against
    Feng S; Lu W; Jian Y; Chen Y; Meng R; Deng J; Liu Q; Yu T; Jin L; Yang X; Li Z; Jian W
    Front Plant Sci; 2021; 12():763755. PubMed ID: 34970281
    [No Abstract]   [Full Text] [Related]  

  • 16. Potential value of small-molecule organic acids for the control of postharvest gray mold caused by Botrytis cinerea.
    Wang Y; Qiao Y; Zhang M; Ma Z; Xue Y; Mi Q; Wang A; Feng J
    Pestic Biochem Physiol; 2021 Aug; 177():104884. PubMed ID: 34301352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cinnamaldehyde Inhibits Postharvest Gray Mold on Pepper Fruits via Inhibiting Fungal Growth and Triggering Fruit Defense.
    Yang L; Liu X; Lu H; Zhang C; Chen J; Shi Z
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoids from Sedum aizoon L. inhibit Botrytis cinerea by negatively affecting cell membrane lipid metabolism.
    Wang K; Zhang X; Shao X; Wei Y; Xu F; Wang H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7139-7151. PubMed ID: 36201036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches.
    Fan L; Wei Y; Chen Y; Jiang S; Xu F; Zhang C; Wang H; Shao X
    Food Chem; 2023 Mar; 403():134419. PubMed ID: 36191421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effect of Melatonin and Selenium Improves Resistance to Postharvest Gray Mold Disease of Tomato Fruit.
    Zang H; Ma J; Wu Z; Yuan L; Lin ZQ; Zhu R; Bañuelos GS; Reiter RJ; Li M; Yin X
    Front Plant Sci; 2022; 13():903936. PubMed ID: 35812947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.