These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38887532)

  • 1. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements.
    Nony L; Clair S; Uehli D; Herrero A; Themlin JM; Campos A; Para F; Pioda A; Loppacher C
    Beilstein J Nanotechnol; 2024; 15():580-602. PubMed ID: 38887532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective stiffness of qPlus sensor and quartz tuning fork.
    Kim J; Won D; Sung B; An S; Jhe W
    Ultramicroscopy; 2014 Jun; 141():56-62. PubMed ID: 24727200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of the oscillation amplitude of quartz tuning fork-based force sensors with astigmatic displacement microscopy.
    Zhang BQ; Ma FC; Xu JN; Ren DD; Zhou D; Pan T; Zhou L; Pu Q; Zeng ZC
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38284812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental and higher eigenmodes of qPlus sensors with a long probe for vertical-lateral bimodal atomic force microscopy.
    Yamada Y; Ichii T; Utsunomiya T; Kimura K; Kobayashi K; Yamada H; Sugimura H
    Nanoscale Adv; 2023 Jan; 5(3):840-850. PubMed ID: 36756504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures.
    Pielmeier F; Meuer D; Schmid D; Strunk C; Giessibl FJ
    Beilstein J Nanotechnol; 2014; 5():407-12. PubMed ID: 24778967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of tip vibrations at higher eigenmodes of QPlus sensors for atomic force microscopy.
    Ruppert MG; Martin-Jimenez D; Yong YK; Ihle A; Schirmeisen A; Fleming AJ; Ebeling D
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 34972093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant.
    Labidi H; Kupsta M; Huff T; Salomons M; Vick D; Taucer M; Pitters J; Wolkow RA
    Ultramicroscopy; 2015 Nov; 158():33-7. PubMed ID: 26117434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of vibration modes of a qPlus sensor with a long tip.
    Chen K; Liu Z; Xie Y; Zhang C; Xu G; Song W; Xu K
    Beilstein J Nanotechnol; 2021; 12():82-92. PubMed ID: 33564605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging in Biologically-Relevant Environments with AFM Using Stiff qPlus Sensors.
    Pürckhauer K; Weymouth AJ; Pfeffer K; Kullmann L; Mulvihill E; Krahn MP; Müller DJ; Giessibl FJ
    Sci Rep; 2018 Jun; 8(1):9330. PubMed ID: 29921947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K.
    Bettac A; Koeble J; Winkler K; Uder B; Maier M; Feltz A
    Nanotechnology; 2009 Jul; 20(26):264009. PubMed ID: 19509448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biaxial atomically resolved force microscopy based on a qPlus sensor operated simultaneously in the first flexural and length extensional modes.
    Kirpal D; Qiu J; Pürckhauer K; Weymouth AJ; Metz M; Giessibl FJ
    Rev Sci Instrum; 2021 Apr; 92(4):043703. PubMed ID: 34243447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe.
    Sweetman A; Jarvis S; Danza R; Moriarty P
    Beilstein J Nanotechnol; 2012; 3():25-32. PubMed ID: 22428093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical bond imaging using torsional and flexural higher eigenmodes of qPlus sensors.
    Martin-Jimenez D; Ruppert MG; Ihle A; Ahles S; Wegner HA; Schirmeisen A; Ebeling D
    Nanoscale; 2022 Apr; 14(14):5329-5339. PubMed ID: 35348167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors.
    Dagdeviren OE; Miyahara Y; Mascaro A; Grütter P
    Rev Sci Instrum; 2019 Jan; 90(1):013703. PubMed ID: 30709205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements.
    Laurent J; Steinberger A; Bellon L
    Nanotechnology; 2013 Jun; 24(22):225504. PubMed ID: 23644764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.
    Ooe H; Fujii M; Tomitori M; Arai T
    Rev Sci Instrum; 2016 Feb; 87(2):023702. PubMed ID: 26931855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for the determination of qPlus sensor spring constants.
    Melcher J; Stirling J; Shaw GA
    Beilstein J Nanotechnol; 2015; 6():1733-42. PubMed ID: 26425425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A qPlus-based scanning probe microscope compatible with optical measurements.
    Cheng B; Wu D; Bian K; Tian Y; Guo C; Liu K; Jiang Y
    Rev Sci Instrum; 2022 Apr; 93(4):043701. PubMed ID: 35489886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise in NC-AFM measurements with significant tip-sample interaction.
    Lübbe J; Temmen M; Rahe P; Reichling M
    Beilstein J Nanotechnol; 2016; 7():1885-1904. PubMed ID: 28144538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.