These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38888627)
1. Autotetraploidy of rice does not potentiate the tolerance to drought stress in the seedling stage. Yu S; Li T; Teng X; Yang F; Ma X; Han J; Zhou L; Bian Z; Wei H; Deng H; Zhu Y; Yu X Rice (N Y); 2024 Jun; 17(1):40. PubMed ID: 38888627 [TBL] [Abstract][Full Text] [Related]
2. Grafting seedling rootstock strengthens tolerance to drought stress in polyploid mulberry (Morus alba L.). Hui T; Bao L; Shi X; Zhang H; Xu K; Wei X; Liang J; Zhang R; Qian W; Zhang M; Su C; Jiao F Plant Physiol Biochem; 2024 Mar; 208():108441. PubMed ID: 38377887 [TBL] [Abstract][Full Text] [Related]
3. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Li M; Zhang C; Hou L; Yang W; Liu S; Pang X; Li Y Cell Biosci; 2021 Jun; 11(1):119. PubMed ID: 34193297 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Analysis of Major Cell Wall Components and Associated Gene Expression in Autotetraploid and Its Donor Diploid Rice ( Leng Z; Liu K; Wang C; Qi F; Zhang C; Li D; Wang N; Ma J Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068612 [TBL] [Abstract][Full Text] [Related]
5. Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. Khalid MF; Hussain S; Anjum MA; Ahmad S; Ali MA; Ejaz S; Morillon R J Plant Physiol; 2020 Jan; 244():153071. PubMed ID: 31756571 [TBL] [Abstract][Full Text] [Related]
6. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Wang Z; Wang M; Liu L; Meng F Int J Mol Sci; 2013 Oct; 14(10):20299-325. PubMed ID: 24129170 [TBL] [Abstract][Full Text] [Related]
7. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. Fakhrzad F; Jowkar A BMC Plant Biol; 2024 Apr; 24(1):330. PubMed ID: 38664602 [TBL] [Abstract][Full Text] [Related]
8. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice. Xian L; Long Y; Yang M; Chen Z; Wu J; Liu X; Wang L Plant Sci; 2021 May; 306():110859. PubMed ID: 33775365 [TBL] [Abstract][Full Text] [Related]
9. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants. Yin L; Qu J; Zhou H; Shang X; Fang H; Lu J; Yan H Genes Genomics; 2018 Sep; 40(9):927-935. PubMed ID: 30155710 [TBL] [Abstract][Full Text] [Related]
10. Alkaline Stress Induces Different Physiological, Hormonal and Gene Expression Responses in Diploid and Autotetraploid Rice. Wang N; Fan X; Lin Y; Li Z; Wang Y; Zhou Y; Meng W; Peng Z; Zhang C; Ma J Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628377 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Li WD; Biswas DK; Xu H; Xu CQ; Wang XZ; Liu JK; Jiang GM Funct Plant Biol; 2009 Sep; 36(9):783-792. PubMed ID: 32688688 [TBL] [Abstract][Full Text] [Related]
12. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Allario T; Brumos J; Colmenero-Flores JM; Tadeo F; Froelicher Y; Talon M; Navarro L; Ollitrault P; Morillon R J Exp Bot; 2011 May; 62(8):2507-19. PubMed ID: 21273338 [TBL] [Abstract][Full Text] [Related]
13. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. Tsai YC; Chen KC; Cheng TS; Lee C; Lin SH; Tung CW BMC Plant Biol; 2019 Sep; 19(1):403. PubMed ID: 31519149 [TBL] [Abstract][Full Text] [Related]
14. Tetraploidy in Jiang J; Yang N; Li L; Qin G; Ren K; Wang H; Deng J; Ding D Front Plant Sci; 2022; 13():875011. PubMed ID: 35574073 [TBL] [Abstract][Full Text] [Related]
15. The effects of elevated CO Cao Y; Jiang M; Xu F; Liu S; Meng F Ecol Evol; 2017 Dec; 7(24):10546-10555. PubMed ID: 29299236 [TBL] [Abstract][Full Text] [Related]
16. Microsatellite analysis of genetic variation and population genetic differentiation in autotetraploid and diploid rice. Luan L; Wang X; Long WB; Liu YH; Tu SB; Zhao ZP; Kong FL; Yu MQ Biochem Genet; 2008 Jun; 46(5-6):248-66. PubMed ID: 18253825 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome-Wide Analysis of Core Transcription Factors Associated with Defense Responses in Autotetraploid versus Diploid Rice under Saline Stress and Recovery. Wang Y; Meng W; Ye Y; Yu X; Chen H; Liu Y; Xu M; Wang N; Qi F; Lan Y; Xu Y; Ma J; Zhang C Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958969 [TBL] [Abstract][Full Text] [Related]
18. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Challabathula D; Analin B; Mohanan A; Bakka K J Plant Physiol; 2022 Jan; 268():153583. PubMed ID: 34871988 [TBL] [Abstract][Full Text] [Related]
19. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. Ghouri F; Shahid MJ; Liu J; Sun L; Riaz M; Imran M; Ali S; Liu X; Shahid MQ J Hazard Mater; 2023 Sep; 458():132019. PubMed ID: 37437486 [TBL] [Abstract][Full Text] [Related]
20. Natural Variation in Xiong H; Yu J; Miao J; Li J; Zhang H; Wang X; Liu P; Zhao Y; Jiang C; Yin Z; Li Y; Guo Y; Fu B; Wang W; Li Z; Ali J; Li Z Plant Physiol; 2018 Sep; 178(1):451-467. PubMed ID: 30068540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]