BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38888669)

  • 1. 3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy.
    Bo T; Pascucci E; Capuani S; Campa-Carranza JN; Franco L; Farina M; Secco J; Becchi S; Cavazzana R; Joubert AL; Hernandez N; Chua CYX; Grattoni A
    Biomed Microdevices; 2024 Jun; 26(3):29. PubMed ID: 38888669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R
    Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform.
    Khalighi S; Saadatmand M
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2153-2164. PubMed ID: 34800519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells.
    Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D
    J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration.
    Kang D; Liu Z; Qian C; Huang J; Zhou Y; Mao X; Qu Q; Liu B; Wang J; Hu Z; Miao Y
    Acta Biomater; 2023 Jul; 165():19-30. PubMed ID: 35288311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells.
    Olate-Moya F; Rubí-Sans G; Engel E; Mateos-Timoneda MÁ; Palza H
    Biomacromolecules; 2024 Jun; 25(6):3312-3324. PubMed ID: 38728671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles.
    Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S
    J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink.
    Hou C; Zheng J; Li Z; Qi X; Tian Y; Zhang M; Zhang J; Huang X
    Int J Biol Macromol; 2021 Jun; 180():177-186. PubMed ID: 33737175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold.
    Wu Z; Li Q; Xie S; Shan X; Cai Z
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110530. PubMed ID: 32228940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.