These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38888776)

  • 1. Establishing Air-Liquid Interface (ALI) Airway Culture Models for Infectious Disease Research.
    Chiok KR; Dahlan NA; Banerjee A; Dhar N
    Methods Mol Biol; 2024; 2813():137-144. PubMed ID: 38888776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A toolbox for studying respiratory viral infections using air-liquid interface cultures of human airway epithelial cells.
    Michi AN; Proud D
    Am J Physiol Lung Cell Mol Physiol; 2021 Jul; 321(1):L263-L280. PubMed ID: 34010062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of caprine airway epithelial cells grown in an air-liquid interface system to study caprine respiratory viruses and bacteria.
    Strässle M; Laloli L; Gultom M; V'kovski P; Stoffel MH; Crespo Pomar S; Chanfon Bätzner A; Ebert N; Labroussaa F; Dijkman R; Jores J; Thiel V
    Vet Microbiol; 2021 Jun; 257():109067. PubMed ID: 33862331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive siRNA transfection method for gene knockdown in air-liquid interface airway epithelial cell cultures.
    Bartman CM; Stelzig KE; Linden DR; Prakash YS; Chiarella SE
    Am J Physiol Lung Cell Mol Physiol; 2021 Jul; 321(1):L280-L286. PubMed ID: 34037474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-Specific stem cell differentiation in an in vitro airway model.
    Prytherch Z; Job C; Marshall H; Oreffo V; Foster M; BéruBé K
    Macromol Biosci; 2011 Nov; 11(11):1467-77. PubMed ID: 21994115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human nasal and tracheo-bronchial respiratory epithelial cell culture.
    Fulcher ML; Randell SH
    Methods Mol Biol; 2013; 945():109-21. PubMed ID: 23097104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease modeling following organoid-based expansion of airway epithelial cells.
    Eenjes E; van Riet S; Kroon AA; Slats AM; Khedoe PPSJ; Boerema-de Munck A; Buscop-van Kempen M; Ninaber DK; Reiss IKM; Clevers H; Rottier RJ; Hiemstra PS
    Am J Physiol Lung Cell Mol Physiol; 2021 Oct; 321(4):L775-L786. PubMed ID: 34378410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media.
    Leung C; Wadsworth SJ; Yang SJ; Dorscheid DR
    Am J Physiol Lung Cell Mol Physiol; 2020 May; 318(5):L1063-L1073. PubMed ID: 32208929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A medium composition containing normal resting glucose that supports differentiation of primary human airway cells.
    Morgan R; Manfredi C; Easley KF; Watkins LD; Hunt WR; Goudy SL; Sorscher EJ; Koval M; Molina SA
    Sci Rep; 2022 Jan; 12(1):1540. PubMed ID: 35087167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SARS-CoV-2 Transcriptome and the Dynamics of the S Gene Furin Cleavage Site in Primary Human Airway Epithelia.
    Zou W; Xiong M; Hao S; Zhang EY; Baumlin N; Kim MD; Salathe M; Yan Z; Qiu J
    mBio; 2021 May; 12(3):. PubMed ID: 33975939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of Air-Liquid Interface Cultures as an In Vitro Model to Assess Primary Airway Epithelial Cell Responses to the Type 2 Cytokine Interleukin-13.
    Everman JL; Rios C; Seibold MA
    Methods Mol Biol; 2018; 1799():419-432. PubMed ID: 29956168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Modeling of SARS-CoV-2 Infection of
    Hao S; Ning K; Kuz CA; Vorhies K; Yan Z; Qiu J
    mBio; 2020 Nov; 11(6):. PubMed ID: 33158999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives.
    Cao X; Coyle JP; Xiong R; Wang Y; Heflich RH; Ren B; Gwinn WM; Hayden P; Rojanasakul L
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):104-132. PubMed ID: 33175307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culturing Immortalized Human Airway Epithelial Cells at an Air-Liquid Interface for Measles Virus Infection.
    Kaufman JW; Singh BK; Li N; Sinn PL
    Methods Mol Biol; 2024; 2808():141-152. PubMed ID: 38743368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.
    Escaffre O; Borisevich V; Vergara LA; Wen JW; Long D; Rockx B
    J Gen Virol; 2016 May; 97(5):1077-1086. PubMed ID: 26932515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditionally Reprogrammed Human Normal Airway Epithelial Cells at ALI: A Physiological Model for Emerging Viruses.
    Liu X; Wu Y; Rong L
    Virol Sin; 2020 Jun; 35(3):280-289. PubMed ID: 32557270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMI-1 extends proliferative potential of human bronchial epithelial cells while retaining their mucociliary differentiation capacity.
    Munye MM; Shoemark A; Hirst RA; Delhove JM; Sharp TV; McKay TR; O'Callaghan C; Baines DL; Howe SJ; Hart SL
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L258-L267. PubMed ID: 27979861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing a liquid-covered culture of polarized human airway epithelial Calu-3 cells to study host cell response to respiratory pathogens in vitro.
    Harcourt JL; Haynes LM
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures.
    Rijsbergen LC; Lamers MM; Comvalius AD; Koutstaal RW; Schipper D; Duprex WP; Haagmans BL; de Vries RD; de Swart RL
    mSphere; 2021 May; 6(3):. PubMed ID: 33980679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization.
    Ji J; Upadhyay S; Xiong X; Malmlöf M; Sandström T; Gerde P; Palmberg L
    Part Fibre Toxicol; 2018 May; 15(1):19. PubMed ID: 29716632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.