These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38889273)

  • 1. scCross: efficient search for rare subpopulations across multiple single-cell samples.
    Gerniers A; Nijssen S; Dupont P
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroCellClust: mining rare and highly specific subpopulations from single-cell expression data.
    Gerniers A; Bricard O; Dupont P
    Bioinformatics; 2021 Oct; 37(19):3220-3227. PubMed ID: 33830183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scTPC: a novel semisupervised deep clustering model for scRNA-seq data.
    Qiu Y; Yang L; Jiang H; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework.
    Zhan X; Yin Y; Zhang H
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.
    Shen Y; Chu Q; Timko MP; Fan L
    Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.
    Shi F; Huang H
    J Comput Biol; 2017 Jul; 24(7):663-674. PubMed ID: 28657835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scMAE: a masked autoencoder for single-cell RNA-seq clustering.
    Fang Z; Zheng R; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38230824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ragas: integration and enhanced visualization for single cell subcluster analysis.
    Balaji U; Rodríguez-Alcázar J; Balasubramanian P; Smitherman C; Baisch J; Pascual V; Gu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38867706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying cancer cells from calling single-nucleotide variants in scRNA-seq data.
    Marot-Lassauzaie V; Beneyto-Calabuig S; Obermayer B; Velten L; Beule D; Haghverdi L
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39163479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scDiffusion: conditional generation of high-quality single-cell data using diffusion model.
    Luo E; Hao M; Wei L; Zhang X
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39171840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClusterMatch aligns single-cell RNA-sequencing data at the multi-scale cluster level via stable matching.
    Ba T; Miao H; Zhang L; Gao C; Wang Y
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39073888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning discriminative and structural samples for rare cell types with deep generative model.
    Wang H; Ma X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35914950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-Cluster Identification through Semi-Supervised Optimization of Rare-Cell Silhouettes (SCISSORS) in single-cell RNA-sequencing.
    Leary JR; Xu Y; Morrison AB; Jin C; Shen EC; Kuhlers PC; Su Y; Rashid NU; Yeh JJ; Peng XL
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Effective Biclustering-Based Framework for Identifying Cell Subpopulations From scRNA-seq Data.
    Fang Q; Su D; Ng W; Feng J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2249-2260. PubMed ID: 32167906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.