BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38889473)

  • 1. RNA nanotechnology on the horizon: Self-assembly, chemical modifications, and functional applications.
    Stewart JM
    Curr Opin Chem Biol; 2024 Jun; 81():102479. PubMed ID: 38889473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA self-assembly and RNA nanotechnology.
    Grabow WW; Jaeger L
    Acc Chem Res; 2014 Jun; 47(6):1871-80. PubMed ID: 24856178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications.
    Xu W; He W; Du Z; Zhu L; Huang K; Lu Y; Luo Y
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):6890-6918. PubMed ID: 31729826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Co-Assembly of Two Building Blocks Harnesses Both their Attributes into a Functional Supramolecular Hydrogel.
    Chakraborty P; Aviv M; Netti F; Cohen-Gerassi D; Adler-Abramovich L
    Macromol Biosci; 2022 May; 22(5):e2100439. PubMed ID: 35133711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving DNA nanostructure stability: A review of the biomedical applications and approaches.
    Nasiri M; Bahadorani M; Dellinger K; Aravamudhan S; Vivero-Escoto JL; Zadegan R
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129495. PubMed ID: 38228209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to Build Hybrid Protein-DNA Nanostructures.
    Hernandez-Garcia A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34070149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications.
    Kihal N; Nazemi A; Bourgault S
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.
    Makam P; Gazit E
    Chem Soc Rev; 2018 May; 47(10):3406-3420. PubMed ID: 29498728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the diverse biomedical applications of programmable and multifunctional DNA nanomaterials.
    Fang L; Shi C; Wang Y; Xiong Z; Wang Y
    J Nanobiotechnology; 2023 Aug; 21(1):290. PubMed ID: 37612757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP as building blocks for the self-assembly of excitonic nanowires.
    Morikawa MA; Yoshihara M; Endo T; Kimizuka N
    J Am Chem Soc; 2005 Feb; 127(5):1358-9. PubMed ID: 15686352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular architectures generated by self-assembly of guanosine derivatives.
    Davis JT; Spada GP
    Chem Soc Rev; 2007 Feb; 36(2):296-313. PubMed ID: 17264931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancement of the Emerging Field of RNA Nanotechnology.
    Jasinski D; Haque F; Binzel DW; Guo P
    ACS Nano; 2017 Feb; 11(2):1142-1164. PubMed ID: 28045501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered RNA Nanodesigns for Applications in RNA Nanotechnology.
    Afonin KA; Lindsay B; Shapiro BA
    DNA RNA Nanotechnol; 2015 Jan; 1(1):1-15. PubMed ID: 34322585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications.
    Bhatia D; Wunder C; Johannes L
    Chembiochem; 2021 Mar; 22(5):763-778. PubMed ID: 32961015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications.
    Wang Y; Rencus-Lazar S; Zhou H; Yin Y; Jiang X; Cai K; Gazit E; Ji W
    ACS Nano; 2024 Jan; 18(2):1257-1288. PubMed ID: 38157317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A promising RNA nanotechnology in clinical therapeutics: a future perspective narrative review.
    Tolba MM; Jabbar A; Afzal S; Mahmoud M; Zulfiqar F; El-Soudany I; Samir S; Wadan AS; Ellakwa TE; Ellakwa DE
    Future Sci OA; 2023 Sep; 9(8):FSO883. PubMed ID: 37621841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications.
    Kong H; Sun B; Yu F; Wang Q; Xia K; Jiang D
    Adv Sci (Weinh); 2023 Aug; 10(24):e2302021. PubMed ID: 37327311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.