These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38889604)
1. In silico mining and identification of a novel lipase from Paenibacillus larvae: Rational protein design for improving catalytic performance. Lu M; Xu J; Wang Z; Wang Y; Wu J; Yang L Enzyme Microb Technol; 2024 Sep; 179():110472. PubMed ID: 38889604 [TBL] [Abstract][Full Text] [Related]
2. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol. Gihaz S; Kanteev M; Pazy Y; Fishman A Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852 [TBL] [Abstract][Full Text] [Related]
3. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds. Li G; Fang X; Su F; Chen Y; Xu L; Yan Y Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200 [No Abstract] [Full Text] [Related]
5. Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate. Mosbah H; Sayari A; Horchani H; Gargouri Y Protein Expr Purif; 2007 Sep; 55(1):31-9. PubMed ID: 17521919 [TBL] [Abstract][Full Text] [Related]
6. Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution. Zhao G; Wang J; Tang Q; Lan D; Wang Y Mol Biotechnol; 2018 Apr; 60(4):319-328. PubMed ID: 29450814 [TBL] [Abstract][Full Text] [Related]
7. Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity. Ding X; Tang XL; Zheng RC; Zheng YG Biotechnol Lett; 2019 Jan; 41(1):137-146. PubMed ID: 30392017 [TBL] [Abstract][Full Text] [Related]
8. Recombinant Expression and Characterization of a Novel Thermo-Alkaline Lipase with Increased Solvent Stability from the Antarctic Thermophilic Bacterium Salas-Bruggink D; Guzmán H; Espina G; Blamey JM Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063171 [TBL] [Abstract][Full Text] [Related]
9. A phenylalanine dynamic switch controls the interfacial activation of Rhizopus chinensis lipase. Wang S; Xu Y; Yu XW Int J Biol Macromol; 2021 Mar; 173():1-12. PubMed ID: 33476612 [TBL] [Abstract][Full Text] [Related]
10. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Kranen E; Detzel C; Weber T; Jose J Microb Cell Fact; 2014 Jan; 13():19. PubMed ID: 24476025 [TBL] [Abstract][Full Text] [Related]
11. Importance of the residue Asp 290 on chain length selectivity and catalytic efficiency of recombinant Staphylococcus simulans lipase expressed in E. coli. Sayari A; Mosbah H; Gargouri Y Mol Biotechnol; 2007 May; 36(1):14-22. PubMed ID: 17827533 [TBL] [Abstract][Full Text] [Related]
12. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability. Zhou Z; Wang X BMC Biotechnol; 2021 May; 21(1):32. PubMed ID: 33941157 [TBL] [Abstract][Full Text] [Related]
13. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Kumar V; Yedavalli P; Gupta V; Rao NM Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332 [TBL] [Abstract][Full Text] [Related]
14. Emulating structural stability of Pseudomonas mendocina lipase: in silico mutagenesis and molecular dynamics studies. Saravanan P; Dubey VK; Patra S J Mol Model; 2014 Nov; 20(11):2501. PubMed ID: 25367042 [TBL] [Abstract][Full Text] [Related]
15. Alteration of Chain-Length Selectivity and Thermostability of Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359 [No Abstract] [Full Text] [Related]
16. Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge. Tan Z; Li J; Wu M; Wang J Appl Biochem Biotechnol; 2014 Aug; 173(7):1752-64. PubMed ID: 24867629 [TBL] [Abstract][Full Text] [Related]
17. Disulfide Engineered Lipase to Enhance the Catalytic Activity: A Structure-Based Approach on BTL2. Godoy CA; Klett J; Di Geronimo B; Hermoso JA; Guisán JM; Carrasco-López C Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31652673 [TBL] [Abstract][Full Text] [Related]
18. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability. Zhang H; Sang J; Zhang Y; Sun T; Liu H; Yue R; Zhang J; Wang H; Dai Y; Lu F; Liu F Int J Biol Macromol; 2019 Sep; 137():1190-1198. PubMed ID: 31299254 [TBL] [Abstract][Full Text] [Related]
19. Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Royter M; Schmidt M; Elend C; Höbenreich H; Schäfer T; Bornscheuer UT; Antranikian G Extremophiles; 2009 Sep; 13(5):769-83. PubMed ID: 19579003 [TBL] [Abstract][Full Text] [Related]
20. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. Xu P; Ni ZF; Zong MH; Ou XY; Yang JG; Lou WY Int J Biol Macromol; 2020 May; 150():9-15. PubMed ID: 32035157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]