BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3889000)

  • 1. Trypsin-modified alkaline phosphatase. Formation of apoenzyme monomer and hybrid dimer.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1985 Jun; 260(12):7557-61. PubMed ID: 3889000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid Escherichia coli alkaline phosphatase formed on proteolysis.
    Olafsdottir S; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4529-35. PubMed ID: 2494174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin modification of Escherichia coli alkaline phosphatase.
    Roberts CH; Chlebowski JF
    J Biol Chem; 1984 Jan; 259(2):729-33. PubMed ID: 6363407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic modification of Escherichia coli alkaline phosphatase.
    Tyler-Cross R; Roberts CH; Chlebowski JF
    J Biol Chem; 1989 Mar; 264(8):4523-8. PubMed ID: 2647738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of antibodies to various molecular forms of a mutationally altered Escherichia coli alkaline phosphatase on its activation by zinc.
    Pages JM; Varenne S; Lazdunski C
    Eur J Biochem; 1976 Aug; 67(1):145-53. PubMed ID: 786617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formamide-induced dissociation and inactivation of Escherichia coli alkaline phosphatase. Metal-dependent reassociation and restoration of activity from isolated subunits.
    Falk MC; Bethune JL; Vallee BL
    Biochemistry; 1982 Mar; 21(7):1471-8. PubMed ID: 7044413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystals of a trypsin-modified alkaline phosphatase. Preliminary crystallographic characterization.
    Olafsdottir S; Wright C; Wright HT; Chlebowski JF
    J Biol Chem; 1988 Jul; 263(20):10002-4. PubMed ID: 3290205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.
    Anderson RA; Kennedy FS; Vallee BL
    Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography.
    Bock JL; Kowalsky A
    Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Sep; 259(17):11036-40. PubMed ID: 6381493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase.
    McCracken S; Meighen EA
    J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of magnesium on the properties of zinc alkaline phosphatase.
    Bosron WF; Anderson RA; Falk MC; Kennedy FS; Vallee BL
    Biochemistry; 1977 Feb; 16(4):610-4. PubMed ID: 13822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between activity and zinc and chloride binding of Escherichia coli alkaline phosphatase.
    Norne JE; Szajn H; Csopak H; Reimarsson P; Lindman B
    Arch Biochem Biophys; 1979 Sep; 196(2):552-6. PubMed ID: 384916
    [No Abstract]   [Full Text] [Related]  

  • 16. Activation of alkaline phosphatase with Mg2+ and Zn2+ in rat hepatoma cells. Accumulation of apoenzyme.
    Sorimachi K
    J Biol Chem; 1987 Feb; 262(4):1535-41. PubMed ID: 3805040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Zn(II) and Mg(II) on phosphohydrolytic activity of rat matrix-induced alkaline phosphatase.
    Ciancaglini P; Pizauro JM; Grecchi MJ; Curti C; Leone FA
    Cell Mol Biol; 1989; 35(5):503-10. PubMed ID: 2611837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetry of alkaline phosphatase. Stability of the monomer and effect of metal ion and phosphate binding on dimer stability.
    Chlebowski JF; Mabrey S; Falk MC
    J Biol Chem; 1979 Jul; 254(13):5745-53. PubMed ID: 36386
    [No Abstract]   [Full Text] [Related]  

  • 20. 31P nuclear magnetic resonance of phosphoenzyme intermediates of alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1983 Jan; 258(1):408-16. PubMed ID: 6336753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.