BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38890206)

  • 1. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating Eulerian and Lagrangian spatial models for vector-host disease dynamics through a fundamental matrix.
    Vargas Bernal E; Saucedo O; Tien JH
    J Math Biol; 2022 Jun; 84(7):57. PubMed ID: 35676373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
    Bichara D; Iggidr A; Smith L
    Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of human movement on the persistence of vector-borne diseases.
    Cosner C; Beier JC; Cantrell RS; Impoinvil D; Kapitanski L; Potts MD; Troyo A; Ruan S
    J Theor Biol; 2009 Jun; 258(4):550-60. PubMed ID: 19265711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a two-patch SIS model with saturating contact rate and one- directing population dispersal.
    Zhang R; Li S
    Math Biosci Eng; 2022 Aug; 19(11):11217-11231. PubMed ID: 36124588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and Hopf Bifurcation of a Vector-Borne Disease Model with Saturated Infection Rate and Reinfection.
    Hu Z; Yin S; Wang H
    Comput Math Methods Med; 2019; 2019():1352698. PubMed ID: 31341509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use.
    Aldila D; Seno H
    Bull Math Biol; 2019 Dec; 81(12):4977-5008. PubMed ID: 31595380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-patch and multi-group epidemic models: a new framework.
    Bichara D; Iggidr A
    J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment.
    Zhao H; Wang K; Wang H
    J Math Biol; 2023 Jan; 86(3):32. PubMed ID: 36695934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.