These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38890287)

  • 1. Neural network variational Monte Carlo for positronic chemistry.
    Cassella G; Foulkes WMC; Pfau D; Spencer JS
    Nat Commun; 2024 Jun; 15(1):5214. PubMed ID: 38890287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering Quantum Phase Transitions with Fermionic Neural Networks.
    Cassella G; Sutterud H; Azadi S; Drummond ND; Pfau D; Spencer JS; Foulkes WMC
    Phys Rev Lett; 2023 Jan; 130(3):036401. PubMed ID: 36763402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: applications to positronic molecular systems.
    Sirjoosingh A; Pak MV; Swalina C; Hammes-Schiffer S
    J Chem Phys; 2013 Jul; 139(3):034103. PubMed ID: 23883006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of electron-positron wavefunctions in the nuclear-electronic orbital framework.
    Swalina C; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2012 Apr; 136(16):164105. PubMed ID: 22559468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio quantum Monte Carlo study of the positronic hydrogen cyanide molecule.
    Kita Y; Maezono R; Tachikawa M; Towler M; Needs RJ
    J Chem Phys; 2009 Oct; 131(13):134310. PubMed ID: 19814556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the ground state of molecules via diffusion Monte Carlo on neural networks.
    Ren W; Fu W; Wu X; Chen J
    Nat Commun; 2023 Apr; 14(1):1860. PubMed ID: 37012248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlated Wave Functions for Electron-Positron Interactions in Atoms and Molecules.
    Charry Martinez JA; Barborini M; Tkatchenko A
    J Chem Theory Comput; 2022 Apr; 18(4):2267-2280. PubMed ID: 35333513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited states of positronic lithium and beryllium.
    Bubin S; Prezhdo OV
    Phys Rev Lett; 2013 Nov; 111(19):193401. PubMed ID: 24266470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method.
    Adamson PE; Duan XF; Burggraf LW; Pak MV; Swalina C; Hammes-Schiffer S
    J Phys Chem A; 2008 Feb; 112(6):1346-51. PubMed ID: 18215029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation.
    Ikabata Y; Aiba R; Iwanade T; Nishizawa H; Wang F; Nakai H
    J Chem Phys; 2018 May; 148(18):184110. PubMed ID: 29764133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching chemical accuracy with quantum Monte Carlo.
    Petruzielo FR; Toulouse J; Umrigar CJ
    J Chem Phys; 2012 Mar; 136(12):124116. PubMed ID: 22462844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of Positron Binding Energies and Electron-Positron Annihilation Rates for Atomic Systems with the Reduced Explicitly Correlated Hartree-Fock Method in the Nuclear-Electronic Orbital Framework.
    Brorsen KR; Pak MV; Hammes-Schiffer S
    J Phys Chem A; 2017 Jan; 121(2):515-522. PubMed ID: 28001073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecules in Environments: Toward Systematic Quantum Embedding of Electrons and Drude Oscillators.
    Ditte M; Barborini M; Medrano Sandonas L; Tkatchenko A
    Phys Rev Lett; 2023 Dec; 131(22):228001. PubMed ID: 38101380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-neural-network solution of the electronic Schrödinger equation.
    Hermann J; Schätzle Z; Noé F
    Nat Chem; 2020 Oct; 12(10):891-897. PubMed ID: 32968231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unbiasing fermionic quantum Monte Carlo with a quantum computer.
    Huggins WJ; O'Gorman BA; Rubin NC; Reichman DR; Babbush R; Lee J
    Nature; 2022 Mar; 603(7901):416-420. PubMed ID: 35296841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Born-Oppenheimer study of positronic molecular systems: e(+)LiH.
    Bubin S; Adamowicz L
    J Chem Phys; 2004 Apr; 120(13):6051-5. PubMed ID: 15267488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance assessment of the effective core potentials under the fermionic neural network: First and second row elements.
    Wang M; Zhou Y; Wang H
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38785290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence to the fixed-node limit in deep variational Monte Carlo.
    Schätzle Z; Hermann J; Noé F
    J Chem Phys; 2021 Mar; 154(12):124108. PubMed ID: 33810658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the positron annihilation rate in PsH with the positronic extension of the explicitly correlated nuclear-electronic orbital method.
    Pak MV; Chakraborty A; Hammes-Schiffer S
    J Phys Chem A; 2009 Apr; 113(16):4004-8. PubMed ID: 19281179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.