BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38890331)

  • 1. Structural basis for hyperpolarization-dependent opening of human HCN1 channel.
    Burtscher V; Mount J; Huang J; Cowgill J; Chang Y; Bickel K; Chen J; Yuan P; Chanda B
    Nat Commun; 2024 Jun; 15(1):5216. PubMed ID: 38890331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis for Hyperpolarization-dependent Opening of the Human HCN1 Channel.
    Burtscher V; Mount J; Cowgill J; Chang Y; Bickel K; Yuan P; Chanda B
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the Human HCN1 Hyperpolarization-Activated Channel.
    Lee CH; MacKinnon R
    Cell; 2017 Jan; 168(1-2):111-120.e11. PubMed ID: 28086084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix breaking transition in the S4 of HCN channel is critical for hyperpolarization-dependent gating.
    Kasimova MA; Tewari D; Cowgill JB; Ursuleaz WC; Lin JL; Delemotte L; Chanda B
    Elife; 2019 Nov; 8():. PubMed ID: 31774399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms.
    Wang ZJ; Blanco I; Hayoz S; Brelidze TI
    J Biol Chem; 2020 Jun; 295(24):8164-8173. PubMed ID: 32341127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
    Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage Sensor Movements during Hyperpolarization in the HCN Channel.
    Lee CH; MacKinnon R
    Cell; 2019 Dec; 179(7):1582-1589.e7. PubMed ID: 31787376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between VSD, pore, and membrane lipids in electromechanical coupling in HCN channels.
    Elbahnsi A; Cowgill J; Burtscher V; Wedemann L; Zeckey L; Chanda B; Delemotte L
    Elife; 2023 Jun; 12():. PubMed ID: 37341381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP.
    Akimoto M; Zhang Z; Boulton S; Selvaratnam R; VanSchouwen B; Gloyd M; Accili EA; Lange OF; Melacini G
    J Biol Chem; 2014 Aug; 289(32):22205-20. PubMed ID: 24878962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical analysis of an HCN1 epilepsy variant suggests a critical role for S5 helix Met-305 in voltage sensor to pore domain coupling.
    Hung A; Forster IC; Mckenzie CE; Berecki G; Petrou S; Kathirvel A; Soh MS; Reid CA
    Prog Biophys Mol Biol; 2021 Nov; 166():156-172. PubMed ID: 34298002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating movements and ion permeation in HCN4 pacemaker channels.
    Saponaro A; Bauer D; Giese MH; Swuec P; Porro A; Gasparri F; Sharifzadeh AS; Chaves-Sanjuan A; Alberio L; Parisi G; Cerutti G; Clarke OB; Hamacher K; Colecraft HM; Mancia F; Hendrickson WA; Siegelbaum SA; DiFrancesco D; Bolognesi M; Thiel G; Santoro B; Moroni A
    Mol Cell; 2021 Jul; 81(14):2929-2943.e6. PubMed ID: 34166608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second S4 movement opens hyperpolarization-activated HCN channels.
    Wu X; Ramentol R; Perez ME; Noskov SY; Larsson HP
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34504015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes during HCN channel gating defined by high affinity metal bridges.
    Kwan DC; Prole DL; Yellen G
    J Gen Physiol; 2012 Sep; 140(3):279-91. PubMed ID: 22930802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels.
    Bell DC; Yao H; Saenger RC; Riley JH; Siegelbaum SA
    J Gen Physiol; 2004 Jan; 123(1):5-19. PubMed ID: 14676285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel.
    Gross C; Saponaro A; Santoro B; Moroni A; Thiel G; Hamacher K
    J Biol Chem; 2018 Aug; 293(33):12908-12918. PubMed ID: 29936413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating mechanism of hyperpolarization-activated HCN pacemaker channels.
    Ramentol R; Perez ME; Larsson HP
    Nat Commun; 2020 Mar; 11(1):1419. PubMed ID: 32184399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HCN channel voltage sensor undergoes a large downward motion during hyperpolarization.
    Dai G; Aman TK; DiMaio F; Zagotta WN
    Nat Struct Mol Biol; 2019 Aug; 26(8):686-694. PubMed ID: 31285608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bipolar switching by HCN voltage sensor underlies hyperpolarization activation.
    Cowgill J; Klenchin VA; Alvarez-Baron C; Tewari D; Blair A; Chanda B
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):670-678. PubMed ID: 30587580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S4 movement in a mammalian HCN channel.
    Vemana S; Pandey S; Larsson HP
    J Gen Physiol; 2004 Jan; 123(1):21-32. PubMed ID: 14676284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.