These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38890584)

  • 1. EPI-Trans: an effective transformer-based deep learning model for enhancer promoter interaction prediction.
    Ahmed FS; Aly S; Liu X
    BMC Bioinformatics; 2024 Jun; 25(1):216. PubMed ID: 38890584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPI-Mind: Identifying Enhancer-Promoter Interactions Based on Transformer Mechanism.
    Ni Y; Fan L; Wang M; Zhang N; Zuo Y; Liao M
    Interdiscip Sci; 2022 Sep; 14(3):786-794. PubMed ID: 35633468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting enhancer-promoter interactions by deep learning and matching heuristic.
    Min X; Ye C; Liu X; Zeng X
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33096548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction.
    Min X; Lu F; Li C
    Curr Pharm Des; 2021; 27(15):1847-1855. PubMed ID: 33234095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPIHC: Improving Enhancer-Promoter Interaction Prediction by Using Hybrid Features and Communicative Learning.
    Liu S; Xu X; Yang Z; Zhao X; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3435-3443. PubMed ID: 34473626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network.
    Jing F; Zhang SW; Zhang S
    BMC Bioinformatics; 2020 Nov; 21(1):507. PubMed ID: 33160328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing large genomic contexts for accurately predicting enhancer-promoter interactions.
    Chen K; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying promoter and enhancer sequences by graph convolutional networks.
    Tenekeci S; Tekir S
    Comput Biol Chem; 2024 Jun; 110():108040. PubMed ID: 38430611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions.
    Feng ZX; Li QZ
    Genomics; 2017 Oct; 109(5-6):341-352. PubMed ID: 28579514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.
    Hong Z; Zeng X; Wei L; Liu X
    Bioinformatics; 2020 Feb; 36(4):1037-1043. PubMed ID: 31588505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers.
    Zhang Y; Zhang P; Wu H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38485768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning.
    Fan Y; Peng B
    BMC Bioinformatics; 2022 Jul; 23(1):272. PubMed ID: 35820811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEC-miTarget: enhancing microRNA target prediction based on deep learning of ribonucleic acid sequences.
    Yang T; Wang Y; He Y
    BMC Bioinformatics; 2024 Apr; 25(1):159. PubMed ID: 38643080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.
    Le NQK; Ho QT; Nguyen TT; Ou YY
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting enhancer-promoter interaction based on epigenomic signals.
    Zheng L; Liu L; Zhu W; Ding Y; Wu F
    Front Genet; 2023; 14():1133775. PubMed ID: 37144127
    [No Abstract]   [Full Text] [Related]  

  • 19. A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.
    Kunkyab T; Bahrami Z; Zhang H; Liu Z; Hyde D
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14297. PubMed ID: 38373289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPIsHilbert: Prediction of Enhancer-Promoter Interactions via Hilbert Curve Encoding and Transfer Learning.
    Zhang M; Hu Y; Zhu M
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.