These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
479 related articles for article (PubMed ID: 38890628)
1. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease. Huang D; Gong L; Wei C; Wang X; Liang Z Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia. Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887 [TBL] [Abstract][Full Text] [Related]
3. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
4. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. Pan P; Li Y; Xiao Y; Han B; Su L; Su M; Li Y; Zhang S; Jiang D; Chen X; Zhou F; Ma L; Bao P; Xie L J Med Internet Res; 2020 Nov; 22(11):e23128. PubMed ID: 33035175 [TBL] [Abstract][Full Text] [Related]
5. Machine learning-enabled prediction of prolonged length of stay in hospital after surgery for tuberculosis spondylitis patients with unbalanced data: a novel approach using explainable artificial intelligence (XAI). Yasin P; Yimit Y; Cai X; Aimaiti A; Sheng W; Mamat M; Nijiati M Eur J Med Res; 2024 Jul; 29(1):383. PubMed ID: 39054495 [TBL] [Abstract][Full Text] [Related]
6. Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning. Sun Y; He Z; Ren J; Wu Y BMC Anesthesiol; 2023 May; 23(1):178. PubMed ID: 37231340 [TBL] [Abstract][Full Text] [Related]
7. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
8. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study. Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223 [TBL] [Abstract][Full Text] [Related]
11. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
12. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
13. AKIML Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035 [TBL] [Abstract][Full Text] [Related]
14. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation. Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147 [TBL] [Abstract][Full Text] [Related]
15. Interpretable mortality prediction model for ICU patients with pneumonia: using shapley additive explanation method. Li J; Zhang Y; He S; Tang Y BMC Pulm Med; 2024 Sep; 24(1):447. PubMed ID: 39272037 [TBL] [Abstract][Full Text] [Related]
16. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
17. Explainable machine learning model to predict refeeding hypophosphatemia. Choi TY; Chang MY; Heo S; Jang JY Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320 [TBL] [Abstract][Full Text] [Related]
18. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
19. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related]
20. [Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis]. Gao X; Lin J; Wu A; Gu H; Liu X; Yin M; Zhou Z; Zhang R; Xu C; Zhu J Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Apr; 35(4):421-426. PubMed ID: 37308200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]