These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 38890720)
1. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. Fan L; Yang Z; Chang M; Chen Z; Wen Q J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720 [TBL] [Abstract][Full Text] [Related]
2. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
3. Development of a nomogram for the prediction of pathological complete response after neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Chao YK; Chang HK; Tseng CK; Liu YH; Wen YW Dis Esophagus; 2017 Feb; 30(2):1-8. PubMed ID: 27868287 [TBL] [Abstract][Full Text] [Related]
4. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer. Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660 [TBL] [Abstract][Full Text] [Related]
5. Diffusion-weighted MRI and Xu X; Sun ZY; Wu HW; Zhang CP; Hu B; Rong L; Chen HY; Xie HY; Wang YM; Lin HP; Bai YR; Ye Q; Ma XM Radiat Oncol; 2021 Jul; 16(1):132. PubMed ID: 34281566 [TBL] [Abstract][Full Text] [Related]
6. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma. Wang JL; Tang LS; Zhong X; Wang Y; Feng YJ; Zhang Y; Liu JY Front Immunol; 2024; 15():1405146. PubMed ID: 38947338 [TBL] [Abstract][Full Text] [Related]
7. A combined nomogram based on radiomics and hematology to predict the pathological complete response of neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Yang Y; Yi Y; Wang Z; Li S; Zhang B; Sang Z; Zhang L; Cao Q; Li B BMC Cancer; 2024 Apr; 24(1):460. PubMed ID: 38609892 [TBL] [Abstract][Full Text] [Related]
8. CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Yang Z; He B; Zhuang X; Gao X; Wang D; Li M; Lin Z; Luo R J Radiat Res; 2019 Jul; 60(4):538-545. PubMed ID: 31111948 [TBL] [Abstract][Full Text] [Related]
9. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
10. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery. Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y Front Oncol; 2020; 10():1398. PubMed ID: 32850451 [No Abstract] [Full Text] [Related]
11. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
12. Potential value of CT-based comprehensive nomogram in predicting occult lymph node metastasis of esophageal squamous cell paralaryngeal nerves: a two-center study. Xue T; Wan X; Zhou T; Zou Q; Ma C; Chen J J Transl Med; 2024 Apr; 22(1):399. PubMed ID: 38689366 [TBL] [Abstract][Full Text] [Related]
13. Radiomics Nomogram with Added Nodal Features Improves Treatment Response Prediction in Locally Advanced Esophageal Squamous Cell Carcinoma: A Multicenter Study. Li K; Zhang S; Hu Y; Cai A; Ao Y; Gong J; Liang M; Yang S; Chen X; Li M; Tian J; Shan H Ann Surg Oncol; 2023 Dec; 30(13):8231-8243. PubMed ID: 37755566 [TBL] [Abstract][Full Text] [Related]
14. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
15. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
16. Preoperative Prediction of Perineural Invasion in Oesophageal Squamous Cell Carcinoma Based on CT Radiomics Nomogram: A Multicenter Study. Zhou H; Zhou J; Qin C; Tian Q; Zhou S; Qin Y; Wu Y; Shi J; Feng F Acad Radiol; 2024 Apr; 31(4):1355-1366. PubMed ID: 37949700 [TBL] [Abstract][Full Text] [Related]
17. Nomogram for predicting pathologic complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Liu G; Chen T; Zhang X; Hu B; Yu J Cancer Med; 2024 Mar; 13(5):e7075. PubMed ID: 38477511 [TBL] [Abstract][Full Text] [Related]
18. Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma. Peng H; Yang Q; Xue T; Chen Q; Li M; Duan S; Cai B; Feng F Br J Radiol; 2022 Feb; 95(1130):20210918. PubMed ID: 34908477 [TBL] [Abstract][Full Text] [Related]
19. Development and validation of a radiomics-based model to predict local progression-free survival after chemo-radiotherapy in patients with esophageal squamous cell cancer. Luo HS; Chen YY; Huang WZ; Wu SX; Huang SF; Xu HY; Xue RL; Du ZS; Li XY; Lin LX; Huang HC Radiat Oncol; 2021 Oct; 16(1):201. PubMed ID: 34641928 [TBL] [Abstract][Full Text] [Related]
20. Predicting response to CCRT for esophageal squamous carcinoma by a radiomics-clinical SHAP model. Cheng X; Zhang Y; Zhu M; Sun R; Liu L; Li X BMC Med Imaging; 2023 Oct; 23(1):145. PubMed ID: 37779188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]