BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38890742)

  • 1. Bimanual coordination and spinal cord neuromodulation: how neural substrates of bimanual movements are altered by transcutaneous spinal cord stimulation.
    Parhizi B; Barss TS; Dineros AM; Sivadasan G; Mann D; Mushahwar VK
    J Neuroeng Rehabil; 2024 Jun; 21(1):103. PubMed ID: 38890742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in the neural underpinnings of unimanual and bimanual control in adults.
    Rogojin A; Gorbet DJ; Sergio LE
    Exp Brain Res; 2023 Mar; 241(3):793-806. PubMed ID: 36738359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of the dominant hemisphere in the organization of bimanual movements.
    Serrien DJ; Cassidy MJ; Brown P
    Hum Brain Mapp; 2003 Apr; 18(4):296-305. PubMed ID: 12632467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG Monitoring Is Feasible and Reliable during Simultaneous Transcutaneous Electrical Spinal Cord Stimulation.
    McGeady C; Vučković A; Zheng YP; Alam M
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements.
    Cardoso de Oliveira S; Gribova A; Donchin O; Bergman H; Vaadia E
    Eur J Neurosci; 2001 Dec; 14(11):1881-96. PubMed ID: 11860483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks.
    Barss TS; Parhizi B; Mushahwar VK
    J Neurophysiol; 2020 Jan; 123(1):158-166. PubMed ID: 31747338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Cervical Transcutaneous Spinal Cord Stimulation on Sensorimotor Cortical Activity during Upper-Limb Movements in Healthy Individuals.
    McGeady C; Alam M; Zheng YP; Vučković A
    J Clin Med; 2022 Feb; 11(4):. PubMed ID: 35207314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance.
    Trlep M; Mihelj M; Munih M
    J Neuroeng Rehabil; 2012 Jul; 9():43. PubMed ID: 22805223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interhemispheric inhibition between dorsal premotor and primary motor cortices is released during preparation of unimanual but not bimanual movements.
    Denyer R; Greeley B; Greenhouse I; Boyd LA
    Eur J Neurosci; 2024 Feb; 59(3):415-433. PubMed ID: 38145976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements.
    Takiyama K; Sakai Y
    Sci Rep; 2016 Mar; 6():23331. PubMed ID: 27025168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural motor control differs between bimanual common-goal vs. bimanual dual-goal tasks.
    Liao WW; Whitall J; Barton JE; McCombe Waller S
    Exp Brain Res; 2018 Jun; 236(6):1789-1800. PubMed ID: 29663024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A balanced motor primitive framework can simultaneously explain motor learning in unimanual and bimanual movements.
    Takiyama K; Sakai Y
    Neural Netw; 2017 Feb; 86():80-89. PubMed ID: 27889240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas.
    Kermadi I; Liu Y; Rouiller EM
    Somatosens Mot Res; 2000; 17(3):255-71. PubMed ID: 10994596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Modulations in Sensorimotor Postmovement and Foreperiod β-Band Activities Related to Error Salience Processing and Sensorimotor Adaptation.
    Torrecillos F; Alayrangues J; Kilavik BE; Malfait N
    J Neurosci; 2015 Sep; 35(37):12753-65. PubMed ID: 26377464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical representation of different motor rhythms during bimanual movements.
    Muthuraman M; Arning K; Govindan RB; Heute U; Deuschl G; Raethjen J
    Exp Brain Res; 2012 Dec; 223(4):489-504. PubMed ID: 23007724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timing of bimanual movements in human and non-human primates in relation to neuronal activity in primary motor cortex and supplementary motor area.
    Gribova A; Donchin O; Bergman H; Vaadia E; Cardoso De Oliveira S
    Exp Brain Res; 2002 Oct; 146(3):322-35. PubMed ID: 12232689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha band power changes in unimanual and bimanual sequential movements, and during motor transitions.
    Deiber MP; Caldara R; Ibañez V; Hauert CA
    Clin Neurophysiol; 2001 Aug; 112(8):1419-35. PubMed ID: 11459682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences.
    Kazennikov O; Hyland B; Corboz M; Babalian A; Rouiller EM; Wiesendanger M
    Neuroscience; 1999 Mar; 89(3):661-74. PubMed ID: 10199603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of interhemispheric communication during complete and partial cancellation of bimanual responses.
    MacDonald HJ; Laksanaphuk C; Day A; Byblow WD; Jenkinson N
    J Neurophysiol; 2021 Mar; 125(3):875-886. PubMed ID: 33567982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal populations in primary motor cortex encode bimanual arm movements.
    Steinberg O; Donchin O; Gribova A; Cardosa de Oliveira S; Bergman H; Vaadia E
    Eur J Neurosci; 2002 Apr; 15(8):1371-80. PubMed ID: 11994131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.