These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38890742)

  • 21. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration.
    Bryson N; Lombardi L; Hawthorn R; Fei J; Keesey R; Peiffer JD; Seáñez I
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37419109
    [No Abstract]   [Full Text] [Related]  

  • 22. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects.
    Milosevic M; Masugi Y; Sasaki A; Sayenko DG; Nakazawa K
    J Neurophysiol; 2019 May; 121(5):1672-1679. PubMed ID: 30840527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental changes in unimanual and bimanual aiming movements.
    Barral J; Debû B; Rival C
    Dev Neuropsychol; 2006; 29(3):415-29. PubMed ID: 16671859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing movement preparation of unimanual, bimanual symmetric, and bimanual asymmetric movements.
    Blinch J; Cameron BD; Cressman EK; Franks IM; Carpenter MG; Chua R
    Exp Brain Res; 2014 Mar; 232(3):947-55. PubMed ID: 24381087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Difference of Neural Networks between Bimanual Antiphase and In-Phase Upper Limb Movements: A Preliminary Functional Magnetic Resonance Imaging Study.
    Lin Q; Li H; Mao YR; Lo WL; Zhao JL; Chen L; Leng Y; Huang DF; Li L
    Behav Neurol; 2017; 2017():8041962. PubMed ID: 28701822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements.
    Formaggio E; Storti SF; Boscolo Galazzo I; Gandolfi M; Geroin C; Smania N; Spezia L; Waldner A; Fiaschi A; Manganotti P
    J Neuroeng Rehabil; 2013 Feb; 10():24. PubMed ID: 23442349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination constraints during bimanual versus unimanual performance conditions.
    Serrien DJ
    Neuropsychologia; 2008 Jan; 46(2):419-25. PubMed ID: 17904169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination.
    Kermadi I; Liu Y; Tempini A; Calciati E; Rouiller EM
    Somatosens Mot Res; 1998; 15(4):287-308. PubMed ID: 9875547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A guide to performing difficult bimanual coordination tasks: just follow the yellow brick road.
    Wang C; Kennedy DM; Boyle JB; Shea CH
    Exp Brain Res; 2013 Sep; 230(1):31-40. PubMed ID: 23811738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Network activation during bimanual movements in humans.
    Walsh RR; Small SL; Chen EE; Solodkin A
    Neuroimage; 2008 Nov; 43(3):540-53. PubMed ID: 18718872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resource-demanding versus cost-effective bimanual interaction in the brain.
    Aramaki Y; Osu R; Sadato N
    Exp Brain Res; 2010 Jun; 203(2):407-18. PubMed ID: 20419370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of transcranial magnetic stimulation on bimanual movements.
    Chen JT; Lin YY; Shan DE; Wu ZA; Hallett M; Liao KK
    J Neurophysiol; 2005 Jan; 93(1):53-63. PubMed ID: 15331622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unified nature of bimanual movements revealed by separating the preparation of each arm.
    Blinch J; Franks IM; Carpenter MG; Chua R
    Exp Brain Res; 2015 Jun; 233(6):1931-44. PubMed ID: 25850406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review.
    Megía García A; Serrano-Muñoz D; Taylor J; Avendaño-Coy J; Gómez-Soriano J
    Neurorehabil Neural Repair; 2020 Jan; 34(1):3-12. PubMed ID: 31858871
    [No Abstract]   [Full Text] [Related]  

  • 36. Is intraindividual variability different between unimanual and bimanual speed-accuracy movements?
    Mickevičienė D; Skurvydas A; Karanauskienė D
    Percept Mot Skills; 2015 Feb; 120(1):125-38. PubMed ID: 25668076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The functional role of interhemispheric synchronization in the control of bimanual timing tasks.
    Serrien DJ; Brown P
    Exp Brain Res; 2002 Nov; 147(2):268-72. PubMed ID: 12410342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unilateral, 3D Arm Movement Kinematics Are Encoded in Ipsilateral Human Cortex.
    Bundy DT; Szrama N; Pahwa M; Leuthardt EC
    J Neurosci; 2018 Nov; 38(47):10042-10056. PubMed ID: 30301759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans.
    Parhizi B; Barss TS; Mushahwar VK
    Front Neurosci; 2021; 15():615103. PubMed ID: 33958979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.