These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38890936)
1. Online System for Monitoring the Degree of Fermentation of Oolong Tea Using Integrated Visible-Near-Infrared Spectroscopy and Image-Processing Technologies. Zheng P; Solomon Adade SY; Rong Y; Zhao S; Han Z; Gong Y; Chen X; Yu J; Huang C; Lin H Foods; 2024 May; 13(11):. PubMed ID: 38890936 [TBL] [Abstract][Full Text] [Related]
2. Classification of oolong tea varieties based on computer vision and convolutional neural networks. Zhu Y; Chen S; Yin H; Han X; Xu M; Wang W; Zhang Y; Feng X; Liu Y J Sci Food Agric; 2024 Feb; 104(3):1630-1637. PubMed ID: 37842747 [TBL] [Abstract][Full Text] [Related]
3. Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis. Dankowska A; Kowalewski W Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():195-202. PubMed ID: 30544010 [TBL] [Abstract][Full Text] [Related]
4. Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy. Sanaeifar A; Huang X; Chen M; Zhao Z; Ji Y; Li X; He Y; Zhu Y; Chen X; Yu X Food Sci Nutr; 2020 Nov; 8(11):5860-5874. PubMed ID: 33282238 [TBL] [Abstract][Full Text] [Related]
5. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. Zhao J; Chen Q; Huang X; Fang CH J Pharm Biomed Anal; 2006 Jun; 41(4):1198-204. PubMed ID: 16621404 [TBL] [Abstract][Full Text] [Related]
6. Detection of Water pH Using Visible Near-Infrared Spectroscopy and One-Dimensional Convolutional Neural Network. Li D; Li L Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957365 [TBL] [Abstract][Full Text] [Related]
7. Rapid monitoring of black tea fermentation quality based on a solution-phase sensor array combined with UV-visible spectroscopy. Li L; Li M; Cui Q; Liu Y; Chen Y; Wang Y; Zhang Z; Chen Q; Ning J Food Chem; 2022 May; 377():131974. PubMed ID: 34979395 [TBL] [Abstract][Full Text] [Related]
8. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Chen Q; Zhao J; Fang CH; Wang D Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):568-74. PubMed ID: 16859975 [TBL] [Abstract][Full Text] [Related]
9. Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics. Hu Y; Wu Y; Sun J; Geng J; Fan R; Kang Z Foods; 2022 Aug; 11(15):. PubMed ID: 35954110 [TBL] [Abstract][Full Text] [Related]
10. Integrating deep learning and data fusion for enhanced oranges soluble solids content prediction using machine vision and Vis/NIR spectroscopy. Sun Z; Tian H; Hu D; Yang J; Xie L; Xu H; Ying Y Food Chem; 2025 Feb; 464(Pt 1):141488. PubMed ID: 39396473 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Tea Polyphenols, Free Amino Acids and Caffeine Content in Tea Leaves during Wilting and Fermentation Using Hyperspectral Imaging. Mao Y; Li H; Wang Y; Fan K; Song Y; Han X; Zhang J; Ding S; Song D; Wang H; Ding Z Foods; 2022 Aug; 11(16):. PubMed ID: 36010536 [TBL] [Abstract][Full Text] [Related]
12. Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques. Liang Y; Tian J; Hu X; Huang Y; He K; Xie L; Yang H; Huang D; Zhou Y; Xia Y J Food Sci; 2024 Jun; 89(6):3540-3553. PubMed ID: 38720570 [TBL] [Abstract][Full Text] [Related]
13. Quantitative Analysis and Discrimination of Partially Fermented Teas from Different Origins Using Visible/Near-Infrared Spectroscopy Coupled with Chemometrics. Wu TH; Tung IC; Hsu HC; Kuo CC; Chang JH; Chen S; Tsai CY; Chuang YK Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977413 [TBL] [Abstract][Full Text] [Related]
14. Rapid determination by near infrared spectroscopy of theaflavins-to-thearubigins ratio during Congou black tea fermentation process. Dong C; Li J; Wang J; Liang G; Jiang Y; Yuan H; Yang Y; Meng H Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():227-234. PubMed ID: 30029185 [TBL] [Abstract][Full Text] [Related]
15. A Gas Sensors Detection System for Real-Time Monitoring of Changes in Volatile Organic Compounds during Oolong Tea Processing. Han Z; Ahmad W; Rong Y; Chen X; Zhao S; Yu J; Zheng P; Huang C; Li H Foods; 2024 May; 13(11):. PubMed ID: 38890949 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy. Wang Y; Li M; Ji R; Wang M; Zheng L Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321833 [TBL] [Abstract][Full Text] [Related]
17. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier Transform-Near-Infrared Spectroscopy and Machine Learning. Ye S; Weng H; Xiang L; Jia L; Xu J Molecules; 2023 Jul; 28(14):. PubMed ID: 37513250 [TBL] [Abstract][Full Text] [Related]
18. Fungal fermentation of Fuzhuan brick tea: A comprehensive evaluation of sensory properties using chemometrics, visible near-infrared spectroscopy, and electronic nose. Hu Y; Chen W; Gouda M; Yao H; Zuo X; Yu H; Zhang Y; Ding L; Zhu F; Wang Y; Li X; Zhou J; He Y Food Res Int; 2024 Jun; 186():114401. PubMed ID: 38729704 [TBL] [Abstract][Full Text] [Related]
19. Non-destructive detection and recognition of pesticide residue levels on cauliflowers using visible/near-infrared spectroscopy combined with chemometrics. Zhang M; Xue J; Li Y; Yin J; Liu Y; Wang K; Li Z J Food Sci; 2023 Oct; 88(10):4327-4342. PubMed ID: 37589297 [TBL] [Abstract][Full Text] [Related]
20. Detection of Type, Blended Ratio, and Mixed Ratio of Pu'er Tea by Using Electronic Nose and Visible/Near Infrared Spectrometer. Xu S; Sun X; Lu H; Zhang Q Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31121902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]